科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為(
為參數),在以O為極點,x軸的非負半軸為極軸的極坐標系中,曲線C的極坐標方程為
(1)求曲線C的直角坐標方程
(2)設直線l與x軸交于點P,且與曲線C相交與A、B兩點,若是
與
的等比中項,求實數m的值
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數,
,直線
與曲線y=f(x)和y=g(x)分別交于M,N兩點,設曲線y=f(x)在點M處的切線為
,在點N處的切線為
(1)當b=1時,若,求a的值
(2)若,求實數a的取值范圍
查看答案和解析>>
科目: 來源: 題型:
【題目】在四棱錐P-ABCD中,PA平面ABCD,菱形ABCD的邊長為2,且
,點E、F分別是PA,CD的中點,
(1)求證:EF平面PBC
(2)若PC與平面ABCD所成角的大小為,求C到平面PBD的距離
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著人民生活水平的日益提高,某小區居民擁有私家車的數量與日俱增.由于該小區建成時間較早,沒有配套建造地下停車場,小區內無序停放的車輛造成了交通的擁堵.該小區的物業公司統計了近五年小區登記在冊的私家車數量(累計值,如147表示2016年小區登記在冊的所有車輛數,其余意義相同),得到如下數據:
編號 | 1 | 2 | 3 | 4 | 5 |
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
數量 | 37 | 104 | 147 | 196 | 216 |
(1)若私家車的數量與年份編號
滿足線性相關關系,求
關于
的線性回歸方程,并預測2020年該小區的私家車數量;
(2)小區于2018年底完成了基礎設施改造,劃設了120個停車位.為解決小區車輛亂停亂放的問題,加強小區管理,物業公司決定禁止無車位的車輛進入小區.由于車位有限,物業公司決定在2019年度采用網絡競拍的方式將車位對業主出租,租期一年,競拍方案如下:①截至2018年己登記在冊的私家車業主擁有競拍資格;②每車至多中請一個車位,由車主在競拍網站上提出申請并給出自己的報價;③根據物價部門的規定,競價不得超過1200元;④申請階段截止后,將所有申請的業主報價自高到低排列,排在前120位的業主以其報價成交;⑤若最后出現并列的報價,則以提出申請的時間在前的業主成交,為預測本次競拍的成交最低價,物業公司隨機抽取了有競拍資格的40位業主,進行了競拍意向的調查,并對他們的擬報競價進行了統計,得到如圖頻率分布直方圖:
(i)求所抽取的業主中有意向競拍報價不低于1000元的人數;
(ii)如果所有符合條件的車主均參與競拍,利用樣本估計總體的思想,請你據此預測至少需要報價多少元才能競拍車位成功?(精確到整數)
參考公式及數據:對于一組數據,其回歸方程
的斜率和截距的最小二乘估計分別為:
;
.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標系中,直線
的參數方程是
為參數),曲線
的參數方程是
為參數),以
為極點,
軸的非負半軸為極軸建立極坐標系.
(1)求直線和曲線
的極坐標方程;
(2)已知射線與曲線
交于
兩點,射線
與直線
交于
點,若
的面積為1,求
的值和弦長
.
查看答案和解析>>
科目: 來源: 題型:
【題目】三國時代吳國數學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得
.設勾股形中勾股比為
,若向弦圖內隨機拋擲
顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數大約為( )
A. B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】若橢圓的離心率等于
,拋物線
的焦點在橢圓
的頂點上.
(1)求拋物線的方程;
(2)若過的直線
與拋物線
交于
、
兩點,又過
、
作拋物線
的切線
、
,當
時,求直線
的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線的極坐標方程是
,曲線
的極坐標方程是
,正三角形
的頂點都在
上,且
按逆時針次序排列,點
的極坐標為
,以極點為坐標原點,極軸為
軸的正半軸建立平面直角坐標系.
(1)求曲線的直角坐標方程及點
的直角坐標;
(2)設為
上任意一點,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com