科目: 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,,平面
平面ABC,點D在線段BC上,且
,F是線段AB的中點,點E是PD上的動點.
(1)證明:.
(2)當EF//平面PAC時,求三棱錐C-DEF的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】“互聯網+”是“智慧城市”的重要內容,A市在智慧城市的建設中,為方便市民使用互聯網,在主城區覆蓋了免費WiFi為了解免費WiFi在A市的使用情況,調查機構借助網絡進行了問卷調查,并從參與調查的網友中抽取了200人進行抽樣分析,得到如下列聯表(單位:人):
經常使用免費WiFi | 爾或不用免費WiFi | 合計 | |
45歲及以下 | 70 | 30 | 100 |
45歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據以上數據,判斷是否有90%的把握認為A市使用免費WiFi的情況與年齡有關;
(2)現從所抽取的45歲以上的市民中按是否經常使用WiFi進行分層抽樣再抽取5人.
(i)分別求這5人中經常使用,偶爾或不用免費WFi的人數;
(ii)從這5人中,再隨機選出2人各贈送1件禮品,求選出的2人中至少有1人經常使用免費WiFi的概率.
附:,其中
.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目: 來源: 題型:
【題目】古希臘數學家阿波羅尼斯在其巨著《圓錐曲線論》中提出“在同一平面上給出三點,若其中一點到另外兩點的距離之比是一個大于零且不等于1的常數,則該點軌跡是一個圓”現在,某電信公司要在甲、乙、丙三地搭建三座5G信號塔來構建一個三角形信號覆蓋區域,以實現5G商用,已知甲、乙兩地相距4公里,丙、甲兩地距離是丙、乙兩地距離的倍,則這個三角形信號覆蓋區域的最大面積(單位:平方公里)是( )
A.B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直角梯形與等腰直角三角形
所在的平面互相垂直.
,
,
,
.
(1) 求證:;
(2) 求直線與平面
所成角的正弦值;
(3) 線段上是否存在點
,使
平面
若存在,求出
;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知動點到定點
的距離比
到定直線
的距離小1.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)過點任意作互相垂直的兩條直線
,分別交曲線
于點
和
.設線段
,
的中點分別為
,求證:直線
恒過一個定點;
(Ⅲ)在(Ⅱ)的條件下,求面積的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在極坐標系中,曲線的極坐標方程為
,曲線
的極坐標方程為
,以極點
為坐標原點,極軸為
的正半軸建立平面直角坐標系
.
(1)求和
的參數方程;
(2)已知射線,將
逆時針旋轉
得到
,且
與
交于
兩點,
與
交于
兩點,求
取得最大值時點
的極坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】若定義在R上的函數滿足:對于任意實數x、y,總有
恒成立,我們稱
為“類余弦型”函數.
已知
為“類余弦型”函數,且
,求
和
的值;
在
的條件下,定義數列
2,3,
求
的值.
若
為“類余弦型”函數,且對于任意非零實數t,總有
,證明:函數
為偶函數,設有理數
,
滿足
,判斷
和
的大小關系,并證明你的結論.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數,則下列命題中正確命題的個數是( )
①函數在
上為周期函數
②函數在區間
,
上單調遞增
③函數在
(
)取到最大值
,且無最小值
④若方程(
)有且僅有兩個不同的實根,則
A.個B.
個C.
個D.
個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com