科目: 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓
的焦距為4,且過點
.
(1)求橢圓的方程
(2)設橢圓的上頂點為
,右焦點為
,直線
與橢圓交于
、
兩點,問是否存在直線
,使得
為
的垂心,若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分12分)已知點為拋物線
的焦點,點
在拋物線
上,且
.
(Ⅰ)求拋物線的方程;
(Ⅱ)已知點,延長
交拋物線
于點
,證明:以點
為圓心且與直線
相切的圓,必與直線
相切.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數).在以坐標原點為極點,
軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為
.
(1)求直線的極坐標方程及曲線C的直角坐標方程;
(2)若是直線
上的一點,
是曲線C上的一點,求
的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,點,
分別為橢圓C:
的左右焦點,橢圓
的離心率為
,點
在橢圓C上,不在
軸上的動點P與動點Q關于原點O對稱,且四邊形
的周長為
.
(1)求動點P的軌跡方程;
(2)在動點P的軌跡上有兩個不同的點M,N
,線段MN的中點為G,已知點
在圓
上,求
的最大值,并判斷此時ΔOMN的形狀.
查看答案和解析>>
科目: 來源: 題型:
【題目】2019年初,某市為了實現教育資源公平,辦人民滿意的教育,準備在今年8月份的小升初錄取中在某重點中學實行分數和搖號相結合的錄取辦法.該市教育管理部門為了了解市民對該招生辦法的贊同情況,隨機采訪了440名市民,將他們的意見和是否近三年家里有小升初學生的情況進行了統計,得到如下的2×2列聯表.
贊同錄取辦法人數 | 不贊同錄取辦法人數 | 合計 | |
近三年家里沒有小升初學生 | 180 | 40 | 220 |
近三年家里有小升初學生 | 140 | 80 | 220 |
合計 | 320 | 120 | 440 |
(1)根據上面的列聯表判斷,能否在犯錯誤的概率不超過0.001的前提下認為是否贊同小升初錄取辦法與近三年是否家里有小升初學生有關;
(2)從上述調查的不贊同小升初錄取辦法人員中根據近三年家里是否有小升初學生按分層抽樣抽出6人,再從這6人中隨機抽出3人進行電話回訪,求3人中恰有1人近三年家里沒有小升初學生的概率.
附:,其中
.
P( | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】己知函數.(
是常數,且(
)
(Ⅰ)求函數的單調區間;
(Ⅱ)當在
處取得極值時,若關于
的方程
在
上恰有兩個不相等的實數根,求實數
的取值范圍;
(Ⅲ)求證:當時
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓的圓心為
,直線l過點
且與x軸不重合,l交圓
于C,D兩點,過
作
的平行線,交
于點E.設點E的軌跡為
.
(1)求的方程;
(2)直線與
相切于點M,
與兩坐標軸的交點為A與B,直線
經過點M且與
垂直,
與
的另一個交點為N,當
取得最小值時,求
的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】第28屆金雞百花電影節將于11月19日至23日在福建省廈門市舉辦,近日首批影展片單揭曉,《南方車站的聚會》《春江水暖》《第一次的離別》《春潮》《抵達之謎》五部優秀作品將在電影節進行展映.若從這五部作品中隨機選擇兩部放在展映的前兩位,則《春潮》與《抵達之謎》至少有一部被選中的概率為( )
A.B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】為了了解運動健身減肥的效果,某健身房調查了20名肥胖者,健身之前他們的體重情況如三維餅圖(1)所示,經過四個月的健身后,他們的體重情況,如三維餅圖(2)所示.對比健身前后,關于這20名肥胖者,下面結論不正確的是( )
A.他們健身后,體重在區間內的人增加了2個
B.他們健身后,體重在區間內的人數沒有改變
C.他們健身后,20人的平均體重大約減少了8 kg
D.他們健身后,原來體重在區間內的肥胖者體重都有減少
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com