科目: 來源: 題型:解答題
設數列{an}的各項都是正數,且對任意n∈N*,都有+…+
=
,記Sn為數列{an}的前n項和.
(1)求數列{an}的通項公式;
(2)若bn=3n+(-1)n-1λ·2an(λ為非零常數,n∈N*),問是否存在整數λ,使得對任意n∈N*,都有bn+1>bn.
查看答案和解析>>
科目: 來源: 題型:解答題
已知數列{an}的前n項和Sn滿足Sn+an+ n-1=2(n∈N*),設cn=2nan.
(1)求證:數列{cn}是等差數列,并求數列{an}的通項公式.
(2)按以下規律構造數列{bn},具體方法如下:
b1=c1,b2=c2+c3,b3=c4+c5+c6+c7,…,第n項bn由相應的{cn}中2n-1項的和組成,求數列{bn}的通項bn.
查看答案和解析>>
科目: 來源: 題型:解答題
已知n∈N*,數列{dn}滿足dn=,數列{an}滿足an=d1+d2+d3+…+d2n,又知在數列{bn}中,b1=2,且對任意正整數m,n,
.
(1)求數列{an}和數列{bn}的通項公式;
(2)將數列{bn}中的第a1項,第a2項,第a3項,…,第an項,…刪去后,剩余的項按從小到大的順序排成新數列{cn},求數列{cn}的前2 013項和.
查看答案和解析>>
科目: 來源: 題型:解答題
已知公差不為零的等差數列{an}的前4項和為10,且a2,a3,a7成等比數列.
(1)求通項公式an;
(2)設bn=2an,求數列{bn}的前n項和Sn.
查看答案和解析>>
科目: 來源: 題型:解答題
已知單調遞增的等比數列{an}滿足:
a2+a3+a4=28,且a3+2是a2和a4的等差中項.
(1)求數列{an}的通項公式an;
(2)令bn=anlogan,Sn=b1+b2+…+bn,求使Sn+n·2n+1>50成立的最小的正整數n.
查看答案和解析>>
科目: 來源: 題型:解答題
設數列{an}滿足a1=2,a2+a4=8,且對任意n∈N*,函數f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x滿足f′=0.
(1)求數列{an}的通項公式;
(2)若bn=2,求數列{bn}的前n項和Sn.
查看答案和解析>>
科目: 來源: 題型:解答題
在公差為d的等差數列{an}中,已知
a1=10,且a1,2a2+2,5a3成等比數列.
(1)求d,an;
(2)若d<0,求|a1|+|a2|+…+|an|.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com