設數列{an}滿足a1=2,a2+a4=8,且對任意n∈N*,函數f(x)=(an-an+1+an+2)x+an+1cos x-an+2sin x滿足f′=0.
(1)求數列{an}的通項公式;
(2)若bn=2,求數列{bn}的前n項和Sn.
科目:高中數學 來源: 題型:解答題
已知等差數列{an}的公差不為零,a1=25,且a1,a11,a13成等比數列.
(1)求{an}的通項公式;
(2)求a1+a4+a7+…+a3n-2.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在等差數列{an}中,a3+a4+a5=84,a9=73.
(1)求數列{an}的通項公式;
(2)對任意m∈N*,將數列{an}中落入區間(9m,92m)內的項的個數記為bm,求數列{bm}的前m項和Sm.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在等差數列和等比數列
中,
,
,
是
前
項和.
(1)若,求實數
的值;
(2)是否存在正整數,使得數列
的所有項都在數列
中?若存在,求出所有的
,若不存在,說明理由;
(3)是否存在正實數,使得數列
中至少有三項在數列
中,但
中的項不都在數列
中?若存在,求出一個可能的
的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知直角的三邊長
,滿足
(1)已知均為正整數,且
成等差數列,將滿足條件的三角形的面積從小到大排成一列
,且
,求滿足不等式
的所有
的值;
(2)已知成等比數列,若數列
滿足
,證明數列
中的任意連續三項為邊長均可以構成直角三角形,且
是正整數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com