科目: 來源: 題型:解答題
已知函數(shù)=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若方程f(x)=0在[-1,1]上有實數(shù)根,求實數(shù)a的取值范圍;
(Ⅱ)當a=0時,若對任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,求實數(shù)m的取值范圍;
(Ⅲ)若函數(shù)y=f(x)(x∈[t,4])的值域為區(qū)間D,是否存在常數(shù)t,使區(qū)間D的長度為7-2t?若存在,求出t的值;若不存在,請說明理由(注:區(qū)間[p,q]的長度為q-p).
查看答案和解析>>
科目: 來源: 題型:解答題
某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q億元),它們與投資額t(億元)的關系有經(jīng)驗公式其中
,今該公司將5億元投資這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元),
(1)求y關于x的解析式,
(2)怎樣投資才能使總利潤最大,最大值為多少?.
查看答案和解析>>
科目: 來源: 題型:解答題
為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:,若不建隔熱層,每年能源消耗費用為8萬元.設
為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及的表達式;
(2)隔熱層修建多厚時,總費用達到最小,并求最小值.
查看答案和解析>>
科目: 來源: 題型:解答題
已知函數(shù)圖象上一點
處的切線方程為
.
(1)求的值;
(2)若方程在
內有兩個不等實根,求
的取值范圍(其中
為自然對數(shù)的底數(shù));(3)令
,若
的圖象與
軸交于
(其中
),
的中點為
,求證:
在
處的導數(shù)
查看答案和解析>>
科目: 來源: 題型:解答題
已知一企業(yè)生產(chǎn)某產(chǎn)品的年固定成本為10萬元,每生產(chǎn)千件需另投入2.7萬元,設該企業(yè)年內共生產(chǎn)此種產(chǎn)品千件,并且全部銷售完,每千件的銷售收入為
萬元,且
(1)寫出年利潤(萬元)關于年產(chǎn)品
(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該企業(yè)生產(chǎn)此產(chǎn)品所獲年利潤最大?
(注:年利潤=年銷售收入-年總成本)
查看答案和解析>>
科目: 來源: 題型:解答題
設函數(shù),
,其中實數(shù)
.
(1)若,求函數(shù)
的單調區(qū)間;
(2)當函數(shù)與
的圖象只有一個公共點且
存在最小值時,記
的最小值為
,求
的值域;
(3)若與
在區(qū)間
內均為增函數(shù),求實數(shù)
的取值范圍.
查看答案和解析>>
科目: 來源: 題型:解答題
已知某公司生產(chǎn)品牌服裝的年固定成本為10萬元,每生產(chǎn)千件,須另投入2.7萬元,設該公司年內共生產(chǎn)品牌服裝千件并全部銷售完,每千件的銷售收入為
萬元,且
.
(1)寫出年利潤(萬元)關于年產(chǎn)量
(千件)的函數(shù)解析式;
(2)當年產(chǎn)量為多少千件時,該公司在這一品牌服裝的生產(chǎn)中所獲年利潤最大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com