【題目】某球員是當(dāng)今國內(nèi)最好的球員之一,在
賽季常規(guī)賽中,場均得分達(dá)
分。
分球和
分球命中率分別為
和
,罰球命中率為
.一場
比賽分為一、二、三、四節(jié),在某場比賽中該球員每節(jié)出手投
分的次數(shù)分別是
,
,
,
,每節(jié)出手投三分的次數(shù)分別是
,
,
,
,罰球次數(shù)分別是
,
,
,
(罰球一次命中記
分)。
(1)估計該球員在這場比賽中的得分(精確到整數(shù));
(2)求該球員這場比賽四節(jié)都能投中三分球的概率;
(3)設(shè)該球員這場比賽中最后一節(jié)的得分為,求
的分布列和數(shù)學(xué)期望。
【答案】(1)分;(2)
;(3)見解析.
【解析】
(1)分別估算分得分、
分得分和罰球得分,加和得到結(jié)果;(2)分別計算各節(jié)能投中
分球的概率,相乘得到所求概率;(3)確定
所有可能取值為
,分別計算每個取值對應(yīng)的概率,從而得到分布列;利用數(shù)學(xué)期望計算公式求得期望.
(1)估計該球員分得分為:
分;
分得分為:
分;
罰球得分為:分
估計該球員在這場比賽中的得分為:
分
(2)第一節(jié)和第三節(jié)能投中分球的概率為:
第二節(jié)和第四節(jié)能投中分球的概率為:
四節(jié)都能投中
分球的概率為:
(3)由題意可知,所有可能的取值為:
則;
;
;
;
的分布列為:
數(shù)學(xué)期望
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2:
時間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關(guān)于t的線性回歸方程;
(Ⅱ)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達(dá)多少?
(附:對于線性回歸方程,其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
,過
的直線與橢圓交于
的兩點(diǎn),且
軸,若
為橢圓上異于
的動點(diǎn)且
,則該橢圓的離心率為___.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)時,求
在
上的單調(diào)區(qū)間;
(2)且
,
均恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,若函數(shù)
的導(dǎo)函數(shù)
的圖象與
軸交于
,
兩點(diǎn),其橫坐標(biāo)分別為
,
,線段
的中點(diǎn)的橫坐標(biāo)為
,且
,
恰為函數(shù)
的零點(diǎn),求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,側(cè)面
側(cè)面
,
,
,
,
為棱
的中點(diǎn),
為
的中點(diǎn).
(1) 求證:平面
;
(2) 若,求三棱柱
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,若直線
的極坐標(biāo)方程為
,曲線
的參數(shù)方程是
(
為參數(shù)).
(1)求直線的直角坐標(biāo)方程和曲線
的普通方程;
(2)設(shè)點(diǎn)的直角坐標(biāo)為
,過
的直線與直線
平行,且與曲線
交于
、
兩點(diǎn),若
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小組為了研究晝夜溫差對一種稻谷種子發(fā)芽情況的影響,他們分別記錄了4月1日至4月5日的每天星夜溫差與實(shí)驗(yàn)室每天每100顆種子的發(fā)芽數(shù),得到如下資料:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
溫差 | 9 | 10 | 11 | 8 | 12 |
發(fā)芽數(shù) | 38 | 30 | 24 | 41 | 17 |
利用散點(diǎn)圖,可知線性相關(guān)。
(1)求出關(guān)于
的線性回歸方程,若4月6日星夜溫差
,請根據(jù)你求得的線性同歸方程預(yù)測4月6日這一天實(shí)驗(yàn)室每100顆種子中發(fā)芽顆數(shù);
(2)若從4月1日 4月5日的五組實(shí)驗(yàn)數(shù)據(jù)中選取2組數(shù)據(jù),求這兩組恰好是不相鄰兩天數(shù)據(jù)的概率.
(公式:)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年1月3日嫦娥四號探測器成功實(shí)現(xiàn)人類歷史上首次月球背面軟著陸,我國航天事業(yè)取得又一重大成就,實(shí)現(xiàn)月球背面軟著陸需要解決的一個關(guān)鍵技術(shù)問題是地面與探測器的通訊聯(lián)系.為解決這個問題,發(fā)射了嫦娥四號中繼星“鵲橋”,鵲橋沿著圍繞地月拉格朗日點(diǎn)的軌道運(yùn)行.
點(diǎn)是平衡點(diǎn),位于地月連線的延長線上.設(shè)地球質(zhì)量為M1,月球質(zhì)量為M2,地月距離為R,
點(diǎn)到月球的距離為r,根據(jù)牛頓運(yùn)動定律和萬有引力定律,r滿足方程:
.
設(shè),由于
的值很小,因此在近似計算中
,則r的近似值為
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com