【題目】設{an}是等比數列,公比為q(q>0且q≠1),4a1 , 3a2 , 2a3成等差數列,且它的前4項和為S4=15.
(1)求{an}通項公式;
(2)令bn=an+2n(n=1,2,3…),求{bn}的前n項和.
【答案】
(1)解:∵4a1,3a2,2a3成等差數列,
∴2×3a2=4a1+2a3,
又∵數列{an}是等比數列,
∴6a1q=4a1+2 ,即q2﹣3q+2=0,
解得:q=2或q=1(舍),
又∵S4=15,
∴ =15,即a1=1,
∴數列{an}是首項為1、公比為2的等比數列,
∴數列{an}通項公式an=2n﹣1
(2)解:由(1)可知bn=2n﹣1+2n(n=1,2,3…),
∴數列{bn}的前n項和為 +2
=2n+n2+n﹣1
【解析】(1)通過4a1 , 3a2 , 2a3成等差數列,利用首項、公比表示出前三項計算可知公比為2,利用前四項和計算可知首項,進而可得通項公式;(2)通過(1)可知bn=2n﹣1+2n,進而利用分組法求和即可.
【考點精析】解答此題的關鍵在于理解數列的前n項和的相關知識,掌握數列{an}的前n項和sn與通項an的關系,以及對數列的通項公式的理解,了解如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式.
科目:高中數學 來源: 題型:
【題目】聯合國教科文組織規定,每年的4月23日是“世界讀書日”.某校研究生學習小組為了解本校學生的閱讀情況,隨機調查了本校400名學生在這一天的閱讀時間(單位:分鐘),將時間數據分成5組:
,并整理得到如下頻率分布直方圖.
(1)求的值;
(2)試估計該學校所有學生在這一天的平均閱讀時間;
(3)若用分層抽樣的方法從這400名學生中抽取50人參加交流會,則在閱讀時間為的兩組中分別抽取多少人?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)=ax2+bx+c,滿足f(0)=2,f(x+1)-f(x)=2x-1.
(1)求函數f(x)的解析式;
(2)求f(x)在區間 [-1,2]上的最大值;
(3)若函數f(x)在區間上單調,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點R(x0 , y0)在D:y2=2px上,以R為切點的D的切線的斜率為 ,過Γ外一點A(不在x軸上)作Γ的切線AB、AC,點B、C為切點,作平行于BC的切線MN(切點為D),點M、N分別是與AB、AC的交點(如圖).
(1)用B、C的縱坐標s、t表示直線BC的斜率;
(2)設三角形△ABC面積為S,若將由過Γ外一點的兩條切線及第三條切線(平行于兩切線切點的連線)圍成的三角形叫做“切線三角形”,如△AMN,再由M、N作“切線三角形”,并依這樣的方法不斷作切線三角形…,試利用“切線三角形”的面積和計算由拋物線及BC所圍成的陰影部分的面積T.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f′(x)是奇函數f(x)(x∈R)的導函數,f(﹣1)=0,當x>0時,xf′(x)﹣f(x)<0,則使得f(x)>0成立的x的取值范圍是( )
A.(﹣∞,﹣1)∪(0,1)
B.(﹣1,0)∪(1,+∞)
C.(﹣∞,﹣1)∪(﹣1,0)
D.(0,1)∪(1,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《城市規劃管理意見》中提出“新建住宅原則上不再建設封閉住宅小區,已建成的住宅小區和單位大院逐步打開”,此消息在網上一石激起千層浪.各種說法不一而足,為了了解居民對“開放小區”認同與否,從[25,55]歲人群中隨機抽取了n人進行問卷調查,得如下數據:
組數 | 分組 | 認同人數 | 認同人數占 |
第一組 | [25,30) | 120 | 0.6 |
第二組 | [30,35) | 195 | p |
第三組 | [35,40) | 100 | 0.5 |
第四組 | [40,45) | a | 0.4 |
第五組 | [45,50) | 30 | 0.3 |
第六組 | [50,55) | 15 | 0.3 |
(1)完成所給頻率分布直方圖,并求n,a,p.
(2)若從[40,45),[45,50)兩個年齡段中的“認同”人群中,按分層抽樣的方法抽9人參與座談會,然后從這9人中選2名作為組長,組長年齡在[40,45)內的人數記為ξ,求隨機變量ξ的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xoy中,曲線C1的參數方程為 ,(α為參數),以原點O為極點,x軸正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρsin(θ+
)=4
.
(1)求曲線C1的普通方程與曲線C2的直角坐標方程;
(2)設P為曲線C1上的動點,求點P到C2上點的距離的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了凈化空氣,某科研單位根據實驗得出,在一定范圍內,每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數關系式近似為y= 若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應時刻所釋放的濃度之和.由實驗知,當空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.
(1)若一次噴灑4個單位的凈化劑,則凈化時間可達幾天?
(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a(1≤a≤4)個單位的藥劑,要使接下來的4天中能夠持續有效凈化,試求a的最小值(精確到0.1,參考數據: 取1.4).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,設
,
,
(
,
為常數).
(1)求的最小值及相應的
的值;
(2)設,若
,求
的取值范圍;
(3)若對任意,以
、
、
為三邊長總能構成三角形,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com