日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(理科)已知函數(shù)f(x)=(1+x)2-2ln(1+x).
(1)若存在x0∈[0,1]使不等式f(x0)-m≤0能成立,求實數(shù)m的最小值;
(2)若關(guān)于x的方程f(x)=x2+x+a在[0,2]上恰有兩個相異實根,求實數(shù)a的取值范圍.

解:(1)要存在x0∈[0,1]使得不等式f(x0)-m≤0能成立,只需x∈[0,1]時,m≥f(x)min
求導(dǎo)得f′(x)=2(1+x)-,定義域為(-1,+∞),
∵當(dāng)x∈(-1,0)時,f′(x)<0,∴函數(shù)f(x)在區(qū)間(-1,0)上是減函數(shù);
當(dāng)x∈(0,+∞)時,f′(x)>0,∴函數(shù)f(x)在區(qū)間(0,+∞)上是增函數(shù).
∴f(x)min=f(0)=1,∴m≥1.故實數(shù)m的最小值為1.
(2)關(guān)于x的方程f(x)=x2+x+a在[0,2]上恰有兩個相異實根,即方程1+x-2ln(1+x)=a在區(qū)間[0,2]上恰有兩個相異實根.
設(shè)h(x)=(1+x)-2ln(1+x),則h′(x)=
由h′(x)>0,得x>1或x<-1(舍去);由h′(x)<0,得-1<x<1.
∴h(x)在[0,1]上遞減,在[1,2]上遞增.
∵h(yuǎn)(  )>h(2),且h(x)在[0,2]上連續(xù)
∴方程1+x-2ln(1+x)=a在區(qū)間[0,2]上恰有兩個相異實根時,h(1)<a≤h(2)
∴2-2ln2<a≤3-2ln3,
∴實數(shù)a的取值范圍是(2-2ln2,3-2ln3).
分析:(1)要存在x0∈[0,1]使得不等式f(x0)-m≤0能成立,只需x∈[0,1]時,m≥f(x)min,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,可以得到f(x)在(-1,0)上為減函數(shù),f(x)在(0,+∞)為增函數(shù),即f(x)的最小值為f(0)=1,所以m的最小值為1
(2)原題設(shè)即方程1+x-2ln(1+x)=a在區(qū)間[0,2]上恰有兩個相異實根,令h(x)=1+x-2ln(1+x),這時只需解出h(x)在[0,2]上的值域,就可以得出a的取值范圍.
點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,本題比較新穎的地方是,求解(2)中的a的取值范圍,經(jīng)過等價變換,只需求h(x)=(1+x)-2ln(1+x)的值域,從而解出a的取值范圍.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理科)已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對任意的t∈[1,2],若函數(shù)g(x)=x3+x2[f/(x)+
m
2
]
在區(qū)間(t,3)上有最值,求實數(shù)m取值范圍;
(3)求證:ln(22+1)+ln(32+1)+ln(42+1)+…+ln(n2+1)<1+2lnn!(n≥2,n∈N*
(文科) 已知函數(shù)f(x)=ax3+
1
2
x2-2x+c

(1)若x=-1是f(x)的極值點且f(x)的圖象過原點,求f(x)的極值;
(2)若g(x)=
1
2
bx2-x+d
,在(1)的條件下,是否存在實數(shù)b,使得函數(shù)g(x)的圖象與函數(shù)f(x)的圖象恒有含x=-1的三個不同交點?若存在,求出實數(shù)b的取值范圍;否則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)已知函數(shù)f(x)=3-4asinxcosx+4cos2x-4cos4x.若函數(shù)f(x)的最小值為1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)已知函數(shù)f(x)=xlnx.
(1)若存在x∈[
1
e
,e]
,使不等式2f(x)≥-x2+ax-3成立,求實數(shù)a的取值范圍;
(2)設(shè)0<a<b,證明:f(a)+f(b)-2f(
a+b
2
)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)已知函數(shù)f(x)=
(3-a)x-3,(x≤7)
ax-6,(x>7)
若x∈Z時,函數(shù)f(x)為遞增函數(shù),則實數(shù)a的取值范圍為
(2,3)
(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•甘肅一模)(理科)已知函數(shù)f(x)=(1+x)2-2ln(1+x).
(1)若存在x0∈[0,1]使不等式f(x0)-m≤0能成立,求實數(shù)m的最小值;
(2)若關(guān)于x的方程f(x)=x2+x+a在[0,2]上恰有兩個相異實根,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 国产中文字幕在线 | 99视频久久 | 综合久久一区二区三区 | 天天想天天干 | 婷婷色综合 | 91久久久久久久久久久久久久 | 中文字幕在线免费视频 | 成人毛片在线观看 | 欧美日韩导航 | 久久久91精品国产一区二区三区 | 中文字幕高清一区 | 免费一区二区三区 | 国产精品嫩草33av在线 | 欧美韩国日本一区 | 欧美精品国产精品 | 亚洲福利片 | 国产一区二区三区免费 | av在线一区二区三区 | 99re国产 | 99久久婷婷| 91在线视频播放 | 国产欧美一区二区三区在线看 | 国产一区二区三区精品久久久 | 美日韩精品视频 | 国产精品久久久久久久久久久久久久 | 国产精品日韩欧美一区二区三区 | 成人欧美| 日韩在线视频播放 | av在线大全| 91天天综合 | 欧美日韩91 | 精品一区久久 | 91社区影院 | 91综合网| 中文成人在线 | a毛片在线免费观看 | 欧美自拍视频在线观看 | 久久爱成人 | 亚洲一区二区三 | 国产精品久久久久久一区二区三区 | 国产日韩中文字幕 |