日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(2012•甘肅一模)(理科)已知函數f(x)=(1+x)2-2ln(1+x).
(1)若存在x0∈[0,1]使不等式f(x0)-m≤0能成立,求實數m的最小值;
(2)若關于x的方程f(x)=x2+x+a在[0,2]上恰有兩個相異實根,求實數a的取值范圍.
分析:(1)要存在x0∈[0,1]使得不等式f(x0)-m≤0能成立,只需x∈[0,1]時,m≥f(x)min,利用導數研究函數的單調性,可以得到f(x)在(-1,0)上為減函數,f(x)在(0,+∞)為增函數,即f(x)的最小值為f(0)=1,所以m的最小值為1
(2)原題設即方程1+x-2ln(1+x)=a在區間[0,2]上恰有兩個相異實根,令h(x)=1+x-2ln(1+x),這時只需解出h(x)在[0,2]上的值域,就可以得出a的取值范圍.
解答:解:(1)要存在x0∈[0,1]使得不等式f(x0)-m≤0能成立,只需x∈[0,1]時,m≥f(x)min
求導得f′(x)=2(1+x)-
2
1+x
,定義域為(-1,+∞),
∵當x∈(-1,0)時,f′(x)<0,∴函數f(x)在區間(-1,0)上是減函數;
當x∈(0,+∞)時,f′(x)>0,∴函數f(x)在區間(0,+∞)上是增函數.
∴f(x)min=f(0)=1,∴m≥1.故實數m的最小值為1.
(2)關于x的方程f(x)=x2+x+a在[0,2]上恰有兩個相異實根,即方程1+x-2ln(1+x)=a在區間[0,2]上恰有兩個相異實根.
設h(x)=(1+x)-2ln(1+x),則h′(x)=
x-1
x+1

由h′(x)>0,得x>1或x<-1(舍去);由h′(x)<0,得-1<x<1.
∴h(x)在[0,1]上遞減,在[1,2]上遞增.
∵h(  )>h(2),且h(x)在[0,2]上連續
∴方程1+x-2ln(1+x)=a在區間[0,2]上恰有兩個相異實根時,h(1)<a≤h(2)
∴2-2ln2<a≤3-2ln3,
∴實數a的取值范圍是(2-2ln2,3-2ln3).
點評:本題考查利用導數研究函數的單調性,本題比較新穎的地方是,求解(2)中的a的取值范圍,經過等價變換,只需求h(x)=(1+x)-2ln(1+x)的值域,從而解出a的取值范圍.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•甘肅一模)定義在R上的偶函數f(x)滿足:對任意的x1,x2∈[0,+∞)(x1≠x2),有
f(x2)-f(x1)
x2-x1
<0
,則(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•甘肅一模)設復數z1=1-3i,z2=1+i,則
z1
z2
在復平面內對應的點在(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•甘肅一模)(理科)已知不等式|x-m|<1成立的充分不必要條件是
1
3
<x<
1
2
,則實數m的取值范圍是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•甘肅一模)已知向量
a
=(1,2),
b
=(-1,λ)
,若
a
+
b
b
垂直,則λ的值為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•甘肅一模)設全集U={-2,-1,0,1,2},集合A={1,2},B={-2,1,2},則A∪(?UB)等于(  )

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 日本欧美久久久久 | 日韩不卡 | 国产成人精| 精品亚洲网 | 黄色国产 | av一区二区三区四区 | 国产精品久久久av | 激情超碰 | 免费国产视频 | 欧美精品在线观看 | 国产一区二区三区久久 | 成人 在线 | 国产一级黄色大片 | 中文字幕一区二区三区在线视频 | 男女视频在线观看 | 国产高清一级毛片在线不卡 | 香蕉一区 | 精品国产乱码久久久久久1区2区 | 欧美2区| 国产视频二 | 久久久久国产一区二区三区 | 日日干天天操 | 一区二区在线 | 国产精品国色综合久久 | 一区二区三区国产 | 日韩免费在线 | 国产精品爽 | 国产日韩在线播放 | 午夜高清视频在线观看 | 亚洲免费成人 | 黄色网址免费在线 | 亚洲一区二区三区视频 | 黑人精品xxx一区一二区 | 亚洲 欧美 日韩 在线 | 色综合久| 国产精品久久久久久久久久久免费看 | 国产精品日韩欧美 | 日本久久久一区二区三区 | 国产亚洲欧美在线 | 日韩国产在线观看 | 99九九久久|