若存在實(shí)常數(shù)和
,使得函數(shù)
和
對(duì)其定義域上的任意實(shí)數(shù)
分別滿(mǎn)足:
和
,則稱(chēng)直線(xiàn)
為
和
的“隔離直線(xiàn)”.已知
,
(其中
為自然對(duì)數(shù)的底數(shù)),根據(jù)你的數(shù)學(xué)知識(shí),推斷
與
間的隔離直線(xiàn)方程為 .
容易觀(guān)察到與
有公共點(diǎn)
,又
則
所以猜想與
間的隔離直線(xiàn)為
下面證明,設(shè)
,所以
,所以猜想成立.
與
間的隔離直線(xiàn)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年長(zhǎng)沙一中第八次月考理)(13分)若存在實(shí)常數(shù)和
,使得函數(shù)
和
對(duì)其定義域上的任意實(shí)數(shù)
分別滿(mǎn)足:
和
,則稱(chēng)直線(xiàn)
為
和
的“隔離直線(xiàn)”.已知
,
(其中
為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求的極值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
若存在實(shí)常數(shù)和
,使得函數(shù)
和
對(duì)其定義域上的任意實(shí)數(shù)
分別滿(mǎn)足:
和
,則稱(chēng)直線(xiàn)
為
和
的“隔離直線(xiàn)”.已知
,
(其中
為自然對(duì)數(shù)的底數(shù)).
(1)求的極值;
(2) 函數(shù)和
是否存在隔離直線(xiàn)?若存在,求出此隔離直線(xiàn)方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆福建漳州高二下學(xué)期期中考試?yán)頂?shù)學(xué)卷(解析版) 題型:解答題
若存在實(shí)常數(shù)和
,使得函數(shù)
和
對(duì)其定義域上的任意實(shí)數(shù)
分別滿(mǎn)足:
和
,則稱(chēng)直線(xiàn)
為
和
的“隔離直線(xiàn)”.已知
,
為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求的極值;
(Ⅱ)函數(shù)和
是否存在隔離直線(xiàn)?若存在,求出此隔離直線(xiàn)方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年山東省高三一輪復(fù)習(xí)質(zhì)量檢測(cè)理科數(shù)學(xué) 題型:解答題
(14分)若存在實(shí)常數(shù)和
,使得函數(shù)
和
對(duì)其定義域上的任意實(shí)數(shù)
分別滿(mǎn)足:
和
,則稱(chēng)直線(xiàn)
為
和
的“隔離直線(xiàn)”.已知
,
(其中
為自然對(duì)數(shù)的底數(shù)).
(1)求的極值;
(2) 函數(shù)和
是否存在隔離直線(xiàn)?若存在,求出此隔離直線(xiàn)方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com