A. | e2017f(-2017)<f(0),f(2017)>e2017f(0) | B. | e2017f(-2017)<f(0),f(2017)<e2017f(0) | ||
C. | e2017f(-2017)>f(0),f(2017)<e2017f(0) | D. | e2017f(-2017)>f(0),f(2017)>e2017f(0) |
分析 由題意,首先構造函數F(x)=$\frac{f(x)}{{e}^{x}}$,對其求導并判斷單調性,利用此性質判斷-2017,0,的函數值大小.
解答 解:設F(x)=$\frac{f(x)}{{e}^{x}}$,
則F'(x)=[$\frac{f(x)}{e^x}$]'=$\frac{f'(x){e}^{x}-f(x){e}^{x}}{({e}^{x})^{2}}=\frac{f'(x)-f(x)}{{e}^{x}}$,因為f(x)>f'(x),
所以F'(x)<0,所以F(x)為減函數,
因為-2017<0,2017>0,
所以F(-2017)>F(0),F(2017)<F(0),
即$\frac{f(-2017)}{{e}^{-2017}}>\frac{f(0)}{{e}^{0}}$,所以e2017f(-2017)>f(0);
$\frac{f(2017)}{{e}^{2017}}<\frac{f(0)}{{e}^{0}}$,即f(2017)<e2017f(0);
故選C.
點評 本題考查了利用函數的單調性判斷函數值的大小;關鍵是正確構造F(x),利用其單調性得到所求.
科目:高中數學 來源: 題型:選擇題
A. | 1<a<2 | B. | $\frac{{3-\sqrt{17}}}{2}<a<\frac{{3+\sqrt{17}}}{2}$ | C. | a<1或a>2 | D. | a≤1或a≥2 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 橫伸長到原來的2倍,再向左平移$\frac{π}{8}$ | |
B. | 橫伸長到原來的2倍,再向右平移$\frac{π}{4}$個 | |
C. | 橫縮短到原來的$\frac{1}{2}$倍,再向右平移$\frac{π}{4}$ | |
D. | 橫縮短到原來的$\frac{1}{2}$倍,再向左平移$\frac{π}{8}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{n-1}{n}$ | B. | $\frac{1}{n}$ | C. | $\frac{n}{n-1}$ | D. | $\frac{n+1}{n}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,2) | B. | [1,2) | C. | (2,5] | D. | [2,5] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{2π+1}{3}$ | B. | $\frac{4π+1}{3}$ | C. | $\frac{2π+3}{3}$ | D. | $\frac{2π+2}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com