科目:高中數學 來源: 題型:解答題
已知A、B、C是橢圓上的三點,其中點A的坐標為
,BC過橢圓m的中心,且
(1)求橢圓的方程;
(2)過點的直線l(斜率存在時)與橢圓m交于兩點P,Q,
設D為橢圓m與y軸負半軸的交點,且,求實數t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分)
橢圓的離心率為
分別是左、右焦點,過F1的直線與圓
相切,且與橢圓E交于A、B兩點。
(1)當時,求橢圓E的方程;
(2)求弦AB中點的軌跡方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題滿分12分)已知在平面直角坐標系中的一個橢圓,它的中心在原點,左焦點為,且過
,設點
.
(1)求該橢圓的標準方程;
(2)若是橢圓上的動點,求線段
中點
的軌跡方程;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分14分)
橢圓過點P
,且離心率為
,F為橢圓的右焦點,
、
兩點在橢圓
上,且
,定點
(-4,0).
(Ⅰ)求橢圓C的方程;
(Ⅱ)當時 ,問:MN與AF是否垂直;并證明你的結論.
(Ⅲ)當、
兩點在
上運動,且
=6
時
, 求直線MN的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知,記點P的軌跡為E.
(1)求軌跡E的方程;
(2)設直線l過點F2且與軌跡E交于P、Q兩點,若無論直線l繞點F2怎樣轉動,在x軸上總存在定點,使
恒成立,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本題11分)如圖1,拋物線y=ax2+bx+c(a≠0)的頂點為(1,4),交x軸于A、B,交y軸于D,其中B點的坐標為(3,0)
(1)求拋物線的解析式
(2)如圖2,過點A的直線與拋物線交于點E,交y軸于點F,其中E點的橫坐標為2,若直線PQ為拋物線的對稱軸,點G為PQ上一動點,則
軸上是否存在一點H,使D、G、F、H四點圍成的四邊形周長最小.若存在,求出這個最小值及G、H的坐
標;若不存在,請說明理由.
(3)如圖3,拋物線上是否存在一點,過點
作
軸的垂線,垂足為
,過點
作直線
,交線段
于點
,連接
,使
~
,若存在,求出點
的坐標;若不存在,說明理由.
圖1 圖2
圖3
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓、拋物線
的焦點均在
軸上,
的中心和
的頂點均為原點
,從每條曲線上取兩個點,將其坐標記錄于下表中:
![]() | 3 | ![]() | 4 | ![]() |
![]() | ![]() | 0 | ![]() | ![]() |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com