【題目】已知是數列
的前
項和,
且
,
,數列
中,
,且
.
(1)求數列的通項公式;
(2)設,求
的前
項和
;
(3)證明:對一切,
【答案】(1)或
;(2)
;(3)見解析
【解析】
(1)當時,構造
,變形為
,再求數列的通項公式;
(2)由已知變形為,利用累加法求數列
的通項公式,然后再求數列
的通項公式,利用錯位相減法求和;
(3)表示求數列
的前
項和,然后將通項放縮為
時,
,然后利用裂項相消法求和.
(1)時,可得
,
時,
,
,兩式相減,
得 ,
,
,
數列
的奇數項和偶數項分別成以4為公差的等差數列,
當,
時,
,
當,
時,
,
,
.
(2)
,
,即
,
整理為:,
,
,
,
…………………………,
,
時,
這個式子相加可得
,
,當
時,
成立,
,
,
,
,
,
兩式相減可得:
,
(3)表示求數列
的前
項和,設前
項和為
,
當時,
成立,
當時,
.
綜上可知,
對一切
,
.
科目:高中數學 來源: 題型:
【題目】[選修4―4:坐標系與參數方程]
在直角坐標系xOy中,曲線C的參數方程為(θ為參數),直線l的參數方程為
.
(1)若a=1,求C與l的交點坐標;
(2)若C上的點到l的距離的最大值為,求a.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AB//CD,且.
(1)證明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC, ,求二面角A-PB-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年森林城市建設座談會在深圳舉行.會上宣讀了國家森林城市稱號批準決定,并舉行授牌儀式,滕州市榜上有名,被正式批準為“國家森林城市”.為進一步推進國家森林城市建設,我市準備制定生態環境改造投資方案,該方案要求同時具備下列兩個條件:
①每年用于風景區改造的費用隨每年改造生態環境總費用
增加而增加;②每年用于風景區改造的費用
不得低于每年改造生態環境總費用
的15%,但不得高于每年改造生態環境總費用
的25%.若每年改造生態環境的總費用至少1億元,至多4億元;請你分析能否采用函數模型
作為生態環境改造投資方案.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的幾何體中,是邊長為2的正三角形,
平面ABC,平面
平面ABC,
,且
.
(1)若,求證:
平面BDE;
(2)若二面角為
,求直線CD與平面BDE所成角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且點
在橢圓
上.
(1)求橢圓的方程;
(2)若橢圓的焦點在
軸上,點
為坐標原點,射線
、
分別與橢圓
交于點
、點
,且
,試判斷直線
與圓
:
的位置關系,并證明你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com