已知圓C:的半徑等于橢圓E:
(a>b>0)的短半軸長,橢圓E的右焦點F在圓C內(nèi),且到直線l:y=x-
的距離為
-
,點M是直線l與圓C的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
(Ⅰ);(Ⅱ)先把
表示出來,得
,同理
,從而命題得證.
【解析】
試題分析:
(Ⅰ)先利用到直線
的距離得
,求出
,再求出
,從而得橢圓方程為
;(Ⅱ)先利用
為直角三角形,求出
,又
,可得
,同理得
,所以
,同理可得
,繼而得到
.
試題解析:(Ⅰ)設(shè)點,則
到直線
的距離為
,即
,
(2分)
因為在圓
內(nèi),所以
,故
;
(4分)
因為圓的半徑等于橢圓
的短半軸長,所以
,
橢圓方程為.
(6分)
(Ⅱ)因為圓心到直線
的距離為
,所以直線
與圓
相切,
是切點,故
為直角三角形,所以
,
又,可得
,
(7分)
,又
,可得
, (9分)
所以,同理可得
,
(11分)
所以,即
. (12分)
考點:直線與橢圓的位置關(guān)系的綜合應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省十所名校高三第三次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知圓C:的半徑等于橢圓E:
(a>b>0)的短半軸長,橢圓E的右焦點F在圓C內(nèi),且到直線l:y=x-
的距離為
-
,點M是直線l與圓C的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省鄭州市高三第十三次調(diào)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知圓C:的半徑等于橢圓E:
(a>b>0)的短半軸長,橢圓E的右焦點F在圓C內(nèi),且到直線l:y=x-
的距離為
-
,點M是直線l與圓C的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1,y1),(x2,y2).
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com