【題目】已知函數為定義域
上的奇函數,且在
上是單調遞增函數,函數
,數列
為等差數列,
,且公差不為0,若
,則
( )
A. 45 B. 15 C. 10 D. 0
【答案】A
【解析】
根據題意,由奇函數的性質可得(-x)+f(x)=0,又由g(x)=f(x-5)+x且g(a1)+g(a2)+…+g(a9)=45,可得f(a1-5)+f(a2-5)+…+f(a9-5)+(a1+a2+…+a9)=45,結合等差數列的性質可得f(a1-5)=-f(a9-5)=f(5-a9),進而可得a1-5=5-a9,即a1+a9=10,進而計算可得答案.
根據題意,函數y=f(x)為定義域R上的奇函數,
則有f(-x)+f(x)=0,
∵g(x)=f(x-5)+x,
∴若g(a1)+g(a2)+…+g(a9)=45,
即f(a1-5)+a1+f(a2-5)+a2+…+f(a9-5)+a9=45,
即f(a1-5)+f(a2-5)+…+f(a9-5)+(a1+a2+…+a9)=45,
f(a1-5)+f(a2-5)+…+f(a9-5)=0,
又由y=f(x)為定義域R上的奇函數,且在R上是單調函數,
f(a1-5)+f(a2-5)+…+f(a9-5)是9項的和且和為0,
必有f(a1-5)+f(a9-5)=0,
則有a1-5=5-a9,
即a1+a9=10,
在等差數列中,a1+a9=10=2a5,
即a5=5,
則a1+a2+…+a9=9a5=45;
故選:A.
科目:高中數學 來源: 題型:
【題目】等腰△ABC中,AC=BC= ,AB=2,E,F分別為AC,BC的中點,將△EFC沿EF折起,使得C到P,得到四棱錐P﹣ABFE,且AP=BP=
.
(1)求證:平面EFP⊥平面ABFE;
(2)求二面角B﹣AP﹣E的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現在某市進行調查,隨機調查了50人,他們年齡的頻數分布及支持“生育二胎”人數如表:
年齡 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統計數據填下面2乘2列聯表,并問是否有的99%把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
(2)若對年齡在[5,15),[35,45)的被調查人中各隨機選取兩人進行調查,記選中的4人不支持“生育二胎”人數為ξ,求隨機變量ξ的分布列及數學期望;
年齡不低于45歲的人數 | 年齡低于45歲的人數 | 合計 | |
支持 | a= | c= | |
不支持 | b= | d= | |
合計 |
參考數據:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.
(1)求線段AB的中點M的軌跡C的方程;
(2)是否存在實數k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,BC= ,AB=AC=AA1=1,D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA1 .
(1)求證:CD=C1D;
(2)求二面角A1﹣B1D﹣P的平面角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com