(本小題滿分12分)
已知函數(shù)
(1)寫出函數(shù)的遞減區(qū)間;
(2)討論函數(shù)的極大值或極小值,如有試寫出極值;
(1)(2)函數(shù)極大值
,極小值
解析試題分析:解:令,得
,
,
x變化時(shí),的符號(hào)變化情況及
的增減性如下表所示:
(1)由表可得函數(shù)的遞減區(qū)間為-1 3 + 0 - 0 + 增 極大值 減 極小值 增
(2)由表可得,當(dāng)時(shí),函數(shù)有極大值
;當(dāng)
時(shí),函數(shù)有極小值
考點(diǎn):函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系;函數(shù)的極值與函數(shù)的關(guān)系。
點(diǎn)評(píng):求函數(shù)的性質(zhì),常結(jié)合函數(shù)的導(dǎo)數(shù)來求出。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)為常數(shù),
)是
上的奇函數(shù).
(Ⅰ)求的值;(Ⅱ)討論關(guān)于
的方程
的根的個(gè).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(Ⅰ)若曲線在點(diǎn)
處與直線
相切,求
的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間與極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在點(diǎn)
處的切線方程為
(1)求函數(shù)的解析式;
(2)若對(duì)于區(qū)間[-2,2]上任意兩個(gè)自變量的值都有
求實(shí)數(shù)c的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù),曲線
在點(diǎn)
處的切線方程
.
(1)求的解析式,并判斷函數(shù)
的圖像是否為中心對(duì)稱圖形?若是,請(qǐng)求其對(duì)稱中心;否則說明理由。
(2)證明:曲線上任一點(diǎn)的切線與直線
和直線
所圍三角形的面積為定值,并求出此定值.
(3) 將函數(shù)的圖象向左平移一個(gè)單位后與拋物線
(
為非0常數(shù))的圖象有幾個(gè)交點(diǎn)?(說明理由)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)已知函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間和值域。
(2)設(shè),求函數(shù)
,若對(duì)于任意
,總存在
,使得
成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)是實(shí)數(shù),
,
(1)若函數(shù)為奇函數(shù),求
的值;
(2)試用定義證明:對(duì)于任意,
在
上為單調(diào)遞增函數(shù);
(3)若函數(shù)為奇函數(shù),且不等式
對(duì)任意
恒成立,求實(shí)數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題12分)
已知函數(shù),其中
。
求函數(shù)的最大值和最小值;
若實(shí)數(shù)滿足:
恒成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若對(duì)定義域內(nèi)任意,都有
成立,求實(shí)數(shù)
的值;
(2)若函數(shù)在定義域上是單調(diào)函數(shù),求
的范圍;
(3)若,證明對(duì)任意正整數(shù)
,不等式
都成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com