【題目】如圖,橢圓
的左右焦點分別為的
、
,離心率為
;過拋物線
焦點
的直線交拋物線于
、
兩點,當
時,
點在
軸上的射影為
。連結
并延長分別交
于
、
兩點,連接
;
與
的面積分別記為
,
,設
.
(Ⅰ)求橢圓和拋物線
的方程;
(Ⅱ)求的取值范圍.
【答案】(1) ,
;(2)
.
【解析】試題分析:(Ⅰ )由題意得得,根據點M在拋物線上得
,又由
,得
,可得
,解得
,從而得
,可得曲線方程。(Ⅱ )設
,
,分析可得
,先設出直線
的方程為
,由
,解得
,從而可求得
,同理可得
,故可將
化為m的代數式,用基本不等式求解可得結果。
試題解析:
(Ⅰ)由拋物線定義可得,
∵點M在拋物線上,
∴,即
①
又由,得
將上式代入①,得
解得
∴
,
所以曲線的方程為
,曲線
的方程為
。
(Ⅱ)設直線的方程為
,
由消去y整理得
,
設,
.
則,
設,
,
則,
所以, ②
設直線的方程為
,
由,解得
,
所以,
由②可知,用代替
,
可得,
由,解得
,
所以,
用代替
,可得
所以
,當且僅當
時等號成立。
所以的取值范圍為
.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐O﹣ABCD的底面是邊長為1的菱形,OA=2,∠ABC=60°,OA⊥平面ABCD,M、N分別是OA、BC的中點.
(1)求證:直線MN∥平面OCD;
(2)求點M到平面OCD的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,過橢圓
的焦點且垂直于
軸的直線被橢圓
截得的弦長為
.
(1)求橢圓的方程;
(2)設點均在橢圓
上,點
在拋物線
上,若
的重心為坐標原點
,且
的面積為
,求點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,直線l的極坐標方程為ρcosθ=4,曲線C的極坐標方程為ρ=2cosθ+2sinθ,以極點為坐標原點O,極軸為x軸的正半軸建立直角坐標系,射線l':y=kx(x≥0,0<k<1)與曲線C交于O,M兩點.
(Ⅰ)寫出直線l的直角坐標方程以及曲線C的參數方程;
(Ⅱ)若射線l′與直線l交于點N,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司人數眾多
為鼓勵員工利用網絡進行營銷,準備為員工辦理手機流量套餐.為了解員工手機流量使用情況,按照男員工和女員工
的比例分層抽樣,得到
名員工的月使用流量
(單位:
)的數據,其頻率分布直方圖如圖所示.
(1)求的值,并估計這
名員工月使用流量的平均值
(同一組中的數據用中點值代表
;
(2)若將月使用流量在以上(含
)的員工稱為“手機營銷達人”,填寫下面的
列聯表,能否有超過
的把握認為“成為手機營銷達人與員工的性別有關”;
男員工 | 女員工 | 合計 | |
手機營銷達人 | 5 | ||
非手機營銷達人 | |||
合計 | 200/span> |
參考公式及數據:,其中
.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(3)若這名員工中有
名男員工每月使用流量在
,從每月使用流量在
的員工中隨機抽取名
進行問卷調查,記女員工的人數為
,求
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《高中數學課程標準》(2017版)規定了數學直觀想象學科的六大核心素養,為了比較甲、乙兩名高二學生的數學核心素養水平,現以六大素養為指標對二人進行了測驗,根據測驗結果繪制了雷達圖(如圖,每項指標值滿分為5分,分值高者為優),則下面敘述正確的是(注:雷達圖,又可稱為戴布拉圖、蜘蛛網圖
,可用于對研究對象的多維分析)( )
A.甲的直觀想象素養高于乙
B.甲的數學建模素養優于數據分析素養
C.乙的數學建模素養與數學運算素養一樣
D.乙的六大素養整體水平低于甲
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】BMI指數(身體質量指數,英文為BodyMassIndex,簡稱BMI)是衡量人體胖瘦程度的一個標準,BMI=體重(kg)/身高(m)的平方.根據中國肥胖問題工作組標準,當BMI≥28時為肥胖.某地區隨機調查了1200名35歲以上成人的身體健康狀況,其中有200名高血壓患者,被調查者的頻率分布直方圖如下:
(1)求被調查者中肥胖人群的BMI平均值;
(2)填寫下面列聯表,并判斷是否有99.9%的把握認為35歲以上成人患高血壓與肥胖有關.
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
肥胖 | 不肥胖 | 合計 | |
高血壓 | |||
非高血壓 | |||
合計 |
附:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正方體的棱長為1,線段
上有兩個動點
,且
,現有如下四個結論:
;
平面
;
三棱錐
的體積為定值;
異面直線
所成的角為定值,
其中正確結論的序號是______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com