【題目】某產品自生產并投入市場以來,生產企業為確保產品質量,決定邀請第三方檢測機構對產品進行質量檢測,并依據質量指標Z來衡量產品的質量.當時,產品為優等品;當
時,產品為一等品;當
時,產品為二等品.第三方檢測機構在該產品中隨機抽取500件,繪制了這500件產品的質量指標
的條形圖.用隨機抽取的500件產品作為樣本,估計該企業生產該產品的質量情況,并用頻率估計概率.
(1)從該企業生產的所有產品中隨機抽取4件,求至少有1件優等品的概率;
(2)現某人決定購買80件該產品.已知每件成本1000元,購買前,邀請第三方檢測機構對要購買的80件產品進行抽樣檢測,買家、企業及第三方檢測機構就檢測方案達成以下協議:從80件產品中隨機抽出4件產品進行檢測,若檢測出3件或4件為優等品,則按每件1600元購買,否則按每件1500元購買,每件產品的檢測費用250元由企業承擔.記企業的收益為X元,求X的分布列與數學期望.
【答案】(1);(2)分布列見解析,數學期望為41500.
【解析】
(1)先求出從樣本中隨機取一件為優等品的概率,再求從該企業生產的所有產品中隨機抽取4件,沒有一件是優等品的概率,從而可求出至少有一件是優等品的概率.
(2)由題意求出檢測出3件或4件為優等品時及檢測出的優等品低于3件時的的值,結合第一問求出
,
,從而可得
的分布列,即可計算其數學期望.
(1)解:由題意知,500件產品中共有優等品件,
則從樣本中隨機取一件為優等品的概率為,
所以從該企業生產的所有產品中隨機抽取4件,沒有一件是優等品的概率為,
則隨機抽取4件,至少有1件優等品的概率為.
(2)解:檢測出3件或4件為優等品時 ,
檢測出的優等品低于3件時,,由題意知
,
,故X的分布列為
| 47000 | 39000 |
|
|
|
所以數學期望.
科目:高中數學 來源: 題型:
【題目】已知橢圓的長軸長為
,右頂點到左焦點的距離為
,
、
分別為橢圓
的左、右兩個焦點.
(1)求橢圓的方程;
(2)已知橢圓的切線
(與橢圓
有唯一交點)的方程為
,切線
與直線
和直線
分別交于點
、
,求證:
為定值,并求此定值;
(3)設矩形的四條邊所在直線都和橢圓
相切(即每條邊所在直線與橢圓
有唯一交點),求矩形
的面積
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,
是邊長為2的正三角形,
是等腰直角三角形,
.
(I)證明:平面平面ABC;
(II)點E在BD上,若平面ACE把三棱錐分成體積相等的兩部分,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(Ⅰ)當時,求曲線
在
處的切線方程;
(Ⅱ)設函數,試判斷函數
是否存在最小值,若存在,求出最小值,若不存在,請說明理由.
(Ⅲ)當時,寫出
與
的大小關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,已知點
,
的參數方程為
(
為參數),以坐標原點
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求的普通方程和
的直角坐標方程;
(2)設曲線與曲線
相交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數方程為(φ為參數),以坐標原點O為極點,x軸的正半軸為極軸,建立極坐標系.
(1)求C1的極坐標方程;
(2)若C1與曲線C2:ρ=2sinθ交于A,B兩點,求|OA||OB|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在①acosB+bcosA=cosC;②2asinAcosB+bsin2A=
a;③△ABC的面積為S,且4S=
(a2+b2-c2),這三個條件中任意選擇一個,填入下面的問題中,并求解,在銳角△ABC中,角A,B,C所對的邊分別為a,b,c,函數
=2
sinωxcosωx+2cos2ωx的最小正周期為π,c為
在[0,
]上的最大值,求a-b的取值范圍.注:如果選擇多個條件分別解答,那么按第一個解答計分.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com