【題目】已知拋物線的焦點F與橢圓
的右焦點重合,過焦點F的直線l交拋物線于A,B兩點.
(1)求拋物線C的方程;
(2)記拋物線C的準線與x軸的交點為H,試問:是否存在,使得
,且
成立?若存在,求實數
的取值范圍;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】如圖所示,有三根針和套在一根針上的個金屬片,按下列規則,把金屬片從一根針上全部移到另一根針上.
(1)每次只能移動一個金屬片;
(2)在每次移動過程中,每根針上較大的金屬片不能放在較小的金屬片上面.
將個金屬片從1號針移到3號針最少需要移動的次數記為
,則
__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知橢圓,
是長軸的一個端點,弦
過橢圓的中心
,且
.
(1)求橢圓的方程.
(2)過橢圓右焦點
的直線,交橢圓
于
兩點,交直線
于點
,判定直線
的斜率是否依次構成等差數列?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
,
)為奇函數,且相鄰兩對稱軸間的距離為
.
(1)當時,求
的單調遞減區間;
(2)將函數的圖象沿
軸方向向右平移
個單位長度,再把橫坐標縮短到原來的
(縱坐標不變),得到函數
的圖象.當時
,求函數
的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面與圓O所在的平面互相垂直.已知AB=2,EF=1.
(Ⅰ)求證:平面DAF⊥平面CBF;
(Ⅱ)當AD=1時,求直線FB與平面DFC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司生產的某種產品,如果年返修率不超過千分之一,則其生產部門當年考核優秀,現獲得該公司2014-2018年的相關數據如下表所示:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年生產臺數 | 2 | 4 | 5 | 6 | 8 |
該產品的年利潤 | 30 | 40 | 60 | 50 | 70 |
年返修臺數(臺) | 19 | 58 | 45 | 71 | 70 |
注:
(1)從該公司2014-2018年的相關數據中任意選取3年的數據,求這3年中至少有2年生產部門考核優秀的概率.
(2)利用上表中五年的數據求出年利潤(百萬元)關于年生產臺數
(萬臺)的回歸直線方程是
①.現該公司計劃從2019年開始轉型,并決定2019年只生產該產品1萬臺,且預計2019年可獲利32(百萬元);但生產部門發現,若用預計的2019年的數據與2014-2018年中考核優秀年份的數據重新建立回歸方程,只有當重新估算的
,
的值(精確到0.01),相對于①中
,
的值的誤差的絕對值都不超過
時,2019年該產品返修率才可低于千分之一.若生產部門希望2019年考核優秀,能否同意2019年只生產該產品1萬臺?請說明理由.
(參考公式:,
,
,
相對
的誤差為
.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某蔬菜批發商分別在甲、乙兩市場銷售某種蔬菜(兩個市場的銷售互不影響),己知該蔬菜每售出1噸獲利500元,未售出的蔬菜低價處理,每噸虧損100 元.現統計甲、乙兩市場以往100個銷售周期該蔬菜的市場需求量的頻數分布,如下表:
以市場需求量的頻率代替需求量的概率.設批發商在下個銷售周期購進噸該蔬菜,在 甲、乙兩市場同時銷售,以
(單位:噸)表示下個銷售周期兩市場的需求量,
(單位:元)表示下個銷售周期兩市場的銷售總利潤.
(Ⅰ)當時,求
與
的函數解析式,并估計銷售利潤不少于8900元的槪率;
(Ⅱ)以銷售利潤的期望為決策依據,判斷與
應選用哪—個.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面真角坐標系xOy中,曲線的參數方程為
(t為參數),以原點O為極點,x軸正半軸為極軸,建立根坐標系.曲線
的極坐標方程為
.
(1)求曲線的普通方程和曲線
的直角坐標方程;
(2)若曲線與曲線
交于M,N兩點,直線OM和ON的斜率分別為
和
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是橢圓
上的點,
是焦點,離心率
.
(1)求橢圓的標準方程;
(2)設是橢圓上的兩點,且
,問線段
的垂直平分線是否過定點?若過定點,求出此定點的坐標,若不過定點,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com