A. | $(\frac{4}{9},\frac{8}{9})$ | B. | $(\frac{2}{9},\frac{4}{9})$ | C. | (2,0) | D. | (9,0) |
分析 根據題意設P的坐標為P(9-2m,m),由切線的性質得點A、B在以OP為直徑的圓C上,求出圓C的方程,將兩個圓的方程相減求出公共弦AB所在的直線方程,再求出直線AB過的定點坐標.
解答 解:因為P是直線x+2y-9=0的任一點,所以設P(9-2m,m),
因為圓x2+y2=4的兩條切線PA、PB,切點分別為A、B,
所以OA⊥PA,OB⊥PB,
則點A、B在以OP為直徑的圓上,即AB是圓O和圓C的公共弦,
則圓心C的坐標是($\frac{9-2m}{2}$,$\frac{m}{2}$),且半徑的平方是r2=$\frac{(9-2m)^{2}+{m}^{2}}{4}$,
所以圓C的方程是(x-$\frac{9-2m}{2}$)2+(y-$\frac{m}{2}$)2=$\frac{(9-2m)^{2}+{m}^{2}}{4}$,①
又x2+y2=4,②,
②-①得,(2m-9)x-my+4=0,即公共弦AB所在的直線方程是:(2m-9)x-my+4=0,
即m(2x-y)+(-9x+4)=0,
由$\left\{\begin{array}{l}{2x-y=0}\\{-9x+4=0}\end{array}\right.$得x=$\frac{4}{9}$,y=$\frac{8}{9}$,
所以直線AB恒過定點($\frac{4}{9}$,$\frac{8}{9}$),
故選A.
點評 本題考查了直線和圓的位置關系,圓和圓的位置關系,圓的切線性質,以及直線過定點問題,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | -2 | B. | 0 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3個 | B. | 2個 | C. | 1個 | D. | 0個 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(2)>f(e)>f(3) | B. | f(3)>f(e)>f(2) | C. | f(3)>f(2)>f(e) | D. | f(e)>f(3)>f(2) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com