【題目】坐標系與參數方程:在平面直角坐標系中,以原點為極點,
軸的非負半軸為極軸建立極坐標系,已知點
的極坐標為
,直線
的極坐標方程為
,且點
在直線
上
(Ⅰ)求的值和直線
的直角坐標方程及
的參數方程;
(Ⅱ)已知曲線的參數方程為
,(
為參數),直線
與
交于
兩點,求
的值
科目:高中數學 來源: 題型:
【題目】已知橢圓
的離心率為
,兩焦點與短軸的一個端點的連線構成的三角形面積為
.
(I)求橢圓的方程;
(II)設與圓相切的直線
交橢圓
于
,
兩點(
為坐標原點),
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某研究性學習小組對春季晝夜溫差大小與某花卉種子發芽多少之間的關系進行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實驗室每天每100顆種子浸泡后的發芽數,得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發芽數 | 23 | 25 | 30 | 26 | 16 |
(1)求這5天的平均發芽率;
(2)從3月1日至3月5日中任選2天,記發芽的種子數分別為,
,用
的形式列出所有的基本事件,并求滿足
的事件
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面是邊長為2的菱形,∠BAD=60°,PB=PD=2,PA,AC∩BD=O
(1)設平面ABP∩平面DCP=l,證明:l∥AB
(2)若E是PA的中點,求三棱錐P﹣BCE的體積VP﹣BCE.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年2月13日《煙臺市全民閱讀促進條例》全文發布,旨在保障全民閱讀權利,培養全民閱讀習慣,提高全民閱讀能力,推動文明城市和文化強市建設.某高校為了解條例發布以來全校學生的閱讀情況,隨機調查了200名學生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.
(1)求這200名學生每周閱讀時間的樣本平均數和樣本方差
(同一組中的數據用該組區間的中間值代表);
(2)由直方圖可以認為,目前該校學生每周的閱讀時間服從正態分布
,其中
近似為樣本平均數
,
近似為樣本方差
.
(i)一般正態分布的概率都可以轉化為標準正態分布的概率進行計算:若,令
,則
,且
.利用直方圖得到的正態分布,求
.
(ii)從該高校的學生中隨機抽取20名,記表示這20名學生中每周閱讀時間超過10小時的人數,求
(結果精確到0.0001)以及
的數學期望.
參考數據:,
.若
,則
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線l:yx﹣3經過橢圓
1(a>b>0)的一個焦點,且點(0,b)到直線l的距離為2.
(1)求橢圓E的方程;
(2)A、B、C是橢圓E上的三個動點,A與B關于原點對稱,且|CA|=|CB|,求△ABC面積的最小值,并求此時點C的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】養路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).
(1)分別計算按這兩種方案所建的倉庫的體積;
(2)分別計算按這兩種方案所建的倉庫的表面積;
(3)哪個方案更經濟些?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com