【題目】重慶一中為了增強學生的記憶力和辨識力,組織了一場類似《最強大腦》的賽,
兩隊各由4名選手組成,每局兩隊各派一名選手
,除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設每局比賽
隊選手獲勝的概率均為
,且各局比賽結果相互獨立,比賽結束時
隊的得分高于
隊的得分的概率為( )
A. B.
C.
D.
科目:高中數學 來源: 題型:
【題目】在一條筆直公路上有A,B兩地,甲騎自行車從A地到B地,乙騎著摩托車從B地到A地,到達A地后立即按原路返回,如圖是甲乙兩人離A地的距離與行駛時間
之間的函數圖象,根據圖象解答以下問題:
直接寫出
,
與x之間的函數關系式
不必寫過程
,求出點M的坐標,并解釋該點坐標所表示的實際意義;
若兩人之間的距離不超過5km時,能夠用無線對講機保持聯系,求在乙返回過程中有多少分鐘甲乙兩人能夠用無線對講機保持聯系;
若甲乙兩人離A地的距離之積為
,求出函數
的表達式,并求出它的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2018年6月份上合峰會在青島召開,面向高校招募志愿者,中國海洋大學海洋環境學院的8名同學符合招募條件并審核通過,其中大一、大二、大三、大四每個年級各2名.若將這8名同學分成甲乙兩個小組,每組4名同學,其中大一的兩名同學必須分到同一組,則分到乙組的4名同學中恰有2名同學是來自于同一年級的分組方式共有__________種.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為考察某種藥物預防疾病的效果,進行動物試驗,調查了 105 個樣本,統計結果為:服藥的共有 55 個樣本,服藥但患病的仍有 10 個樣本,沒有服藥且未患病的有 30個樣本.
(1)根據所給樣本數據完成 列聯表中的數據;
(2)請問能有多大把握認為藥物有效?
(參考公式:獨立性檢驗臨界值表
概率 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
患病 | 不患病 | 合計 | |
服藥 | |||
沒服藥 | |||
合計 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數, 得到如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數 | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數據中選取 2 組,用剩下的 4 組數據求 線性回歸方程,再用被選取的 2 組數據進行檢驗;
(Ⅰ)求選取的 2 組數據恰好是相鄰兩個月的概率;
(Ⅱ)若選取的是1月與6月的兩組數據,請根據2至5月份的數據,求出 關于
的線性回歸方程 ;
(Ⅲ)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人, 則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
附:對于一組數據,
,…,(
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l1:x+my+1=0和l2:(m-3)x-2y+(13-7m)=0.
(1)若l1⊥l2,求實數m的值;
(2)若l1∥l2,求l1與l2之間的距離d.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面是正方形,側面PAD⊥底面ABCD,且PA=PD= AD,若E、F分別為PC、BD的中點. (Ⅰ) 求證:EF∥平面PAD;
(Ⅱ) 求證:EF⊥平面PDC.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com