【題目】給出下列四種說法:
(1)函數(shù)與函數(shù)
的定義域相同;
(2)函數(shù)與
的值域相同;
(3)若函數(shù)式定義在R上的偶函數(shù)且在
為減函數(shù)對于銳角
則
;
(4)若函數(shù)且
,則
;
其中正確說法的序號是________.
【答案】(1)(3)
【解析】
(1)根據(jù)定義域直接判斷;(2)分別求出值域即可判斷;(3)利用偶函數(shù)圖形的對稱性得出在上的單調(diào)性及銳角
,可以判斷;(4)通過對數(shù)性質(zhì)及對數(shù)運(yùn)算即可判斷.
(1)函數(shù)與函數(shù)
的定義域都為
.所以(1)正確.
(2) 函數(shù)的值域?yàn)?/span>
而
的值域?yàn)?/span>
,所以值域不同,故(2)錯誤.
(3) 函數(shù)在定義R上的偶函數(shù)且在
為減函數(shù),則函數(shù)
在在
為增函數(shù),又
為銳角,則
,所以
,故(3)正確.
(4) 函數(shù)且
,則
,即
,
得,故(4)錯誤.
故答案為:(1)(3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
(
)經(jīng)過點(diǎn)
,且兩個焦點(diǎn)
,
的坐標(biāo)依次為
和
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),
是橢圓
上的兩個動點(diǎn),
為坐標(biāo)原點(diǎn),直線
的斜率為
,直線
的斜率為
,若
,證明:直線
與以原點(diǎn)為圓心的定圓相切,并寫出此定圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某網(wǎng)店經(jīng)營的一種商品進(jìn)行進(jìn)價是每件10元,根據(jù)一周的銷售數(shù)據(jù)得出周銷售量(件)與單價
(元)之間的關(guān)系如下圖所示,該網(wǎng)店與這種商品有關(guān)的周開支均為25元.
(1)根據(jù)周銷售量圖寫出(件)與單價
(元)之間的函數(shù)關(guān)系式;
(2)寫出利潤(元)與單價
(元)之間的函數(shù)關(guān)系式;當(dāng)該商品的銷售價格為多少元時,周利潤最大?并求出最大周利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對一批產(chǎn)品的內(nèi)徑進(jìn)行抽查,已知被抽查的產(chǎn)品的數(shù)量為200,所得內(nèi)徑大小統(tǒng)計如表所示:
(Ⅰ)以頻率估計概率,若從所有的這批產(chǎn)品中隨機(jī)抽取3個,記內(nèi)徑在的產(chǎn)品個數(shù)為X,X的分布列及數(shù)學(xué)期望
;
(Ⅱ)已知被抽查的產(chǎn)品是由甲、乙兩類機(jī)器生產(chǎn),根據(jù)如下表所示的相關(guān)統(tǒng)計數(shù)據(jù),是否有的把握認(rèn)為生產(chǎn)產(chǎn)品的機(jī)器種類與產(chǎn)品的內(nèi)徑大小具有相關(guān)性.
參考公式:,(其中
為樣本容量).
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為定義在
上的奇函數(shù),且當(dāng)
時,
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求函數(shù)在區(qū)間
上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù),
是實(shí)數(shù),
是虛數(shù)單位.
(1)求復(fù)數(shù);
(2)若復(fù)數(shù)所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為a的菱形ABCD中,,E,F分別是PA和AB的中點(diǎn).
(1)求證: EF||平面PBC;
(2)求E到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知多面體的底面
是邊長為
的菱形,
底面
,
,且
.
(1)證明:平面平面
;
(2)若直線與平面
所成的角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)為圓
的圓心,
是圓上的動點(diǎn),點(diǎn)
在圓的半徑
上,且有點(diǎn)
和
上的點(diǎn)
,滿足
,
.
(1)當(dāng)點(diǎn)在圓上運(yùn)動時,求點(diǎn)
的軌跡方程;
(2)若斜率為的直線
與圓
相切,直線
與(1)中所求點(diǎn)
的軌跡交于不同的兩點(diǎn)
,
,
是坐標(biāo)原點(diǎn),且
時,求
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com