日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】設函數 (b≠0).
(1)若函數f(x)在定義域上是單調函數,求實數b的取值范圍;
(2)求函數f(x)的極值點;
(3)令b=1, ,設A(x1 , y1),B(x2 , y2),C(x3 , y3)是曲線y=g(x)上相異三點,其中﹣1<x1<x2<x3 . 求證:

【答案】
(1)解: ,∵函數f(x)在定義域上是單調函數,

∴f'(x)≥0或f'(x)≤0在(﹣1,+∞)上恒成立.

若f'(x)≥0恒成立,得

若f'(x)≤0恒成立,即 恒成立.

在(﹣1,+∞)上沒有最小值,

∴不存在實數b使f'(x)≤0恒成立.

綜上所述,實數b的取值范圍是


(2)由(1)知當 時,函數f(x)無極值點.

時,f(x)=0有兩個不同解,

∵b<0時,

即x1(﹣1,+∞),x2∈(﹣1,+∞),

∴b<0時,f(x)在(﹣1,x2)上遞減,在(x2,+∞)上遞增,f(x)有唯一極小值點

時,

∴x1,x2∈(﹣1,+∞),f(x)=0在(﹣1,x1)上遞增,在(x1,x2)遞減,

在(x2,+∞)遞增,f(x)有一個極大值點 和一個極小值點

綜上所述,b<0時,f(x)有唯一極小值點

時,f(x)有一個極大值點 和一個極小值點

時,f(x)無極值點.


(3)先證: ,即證

即證 =

(t>1),

所以 在(1,+∞)上單調遞增,

即p(t)>p(1)=0,即有 ,所以獲證.

同理可證:

所以


【解析】(1)對函數f(x)進行求導,要使得函數f(x)在定義域上是單調函數,只需要f'(x)≥0或f'(x)≤0在(﹣1,+∞)上恒成立,進行參變分離分類討論得出實數b的取值范圍,(2)當b ≥ 時,函數f(x)無極值點,當b<時,利用求根公式可得到f'(x)=0有兩個不同解,且當b<0時,可判斷出x1(﹣1,+∞),x2∈(﹣1,+∞),此時可得到極值點,當 0 < b < 時,x1,x2∈(﹣1,+∞),可得到此時f(x)的單調區間及極值點,(3)先證: > g ' ( x 2 ) ,即證> 1 +,令=t(t>1) ,構造函數p(t)=lnt+-1,通過求導可得出 p(t)>p(1)=0,即有 l n t + 1 > 0 ,所以獲證,同理可證:< g ' ( x 2 ),從而結論得證.
【考點精析】通過靈活運用利用導數研究函數的單調性和函數的極值與導數,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果,那么函數在這個區間單調遞增;(2)如果,那么函數在這個區間單調遞減;求函數的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)是定義在R上的奇函數,當x<0時,f(x)=ex(x+1),給出下列命題:
①當x>0時,f(x)=﹣e﹣x(x﹣1);
②函數f(x)有2個零點;
③f(x)<0的解集為(﹣∞,﹣1)∪(0,1),
x1 , x2∈R,都有|f(x1)﹣f(x2)|<2.其中正確命題的個數是( )
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直三棱柱A1B1C1﹣ABC中, ,AB=AC=AA1=1,已知G和E分別為A1B1和CC1的中點,D與F分別為線段AC和AB上的動點(不包括端點),若GD⊥EF,則線段DF的長度的取值范圍為(
A.[ ,1)
B.[ ,1]
C.( ,1)
D.[ ,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 (m,n∈R)在x=1處取得極值2.
(1)求f(x)的解析式;
(2)k為何值時,方程f(x)-k=0只有1個根
(3)設函數g(x)=x2-2ax+a,若對于任意x1∈R,總存在x2∈[-1,0],使得g(x2)≤f(x1),求a的取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設x,y∈R,定義xy=x(a﹣y)(a∈R,且a為常數),若f(x)=ex , g(x)=e﹣x+2x2 , F(x)=f(x)g(x).
①g(x)不存在極值;
②若f(x)的反函數為h(x),且函數y=kx與函數y=|h(x)|有兩個交點,則k=
③若F(x)在R上是減函數,則實數a的取值范圍是(﹣∞,﹣2];
④若a=﹣3,在F(x)的曲線上存在兩點,使得過這兩點的切線互相垂直.
其中真命題的序號有 . (把所有真命題序號寫上)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在銳角△ABC中, =
(1)求角A;
(2)若a= ,求bc的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=cos(2x+ ),將y=f(x)的圖象上所有的點的橫坐標縮短為原來的 倍,縱坐標不變;再把所得的圖象向右平移|φ|個單位長度,所得的圖象關于原點對稱,則φ的一個值是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= 若f(2﹣a2)>f(a),則實數a的取值范圍為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1=﹣1,a2=1,且
(1)求a5+a6的值;
(2)設Sn為數列{an}的前n項的和,求Sn
(3)設bn=a2n﹣1+a2n , 是否存正整數i,j,k(i<j<k),使得bi , bj , bk成等差數列?若存在,求出所有滿足條件的i,j,k;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 精品国产高清一区二区三区 | 成人免费视频一区二区 | 久久av免费 | 国产偷v国产偷∨精品视频 国产偷v国产偷v亚洲 | 日本一区二区三区四区 | 园产精品久久久久久久7电影 | 久久久国产精品 | 亚洲精品视频一区 | xxx在线观看| 国产一区二区三区精品久久久 | 亚洲激情综合 | 国产精品97在线 | 国产一区二区在线看 | 免费一级淫片 | 国产区最新 | 久久久久久免费 | 久久精品视频网 | 久久99精品久久久水蜜桃 | 亚洲大尺度视频 | 国产精品27页 | 国产精品久久久久久久久免费丝袜 | 日韩一区二区视频 | 国产精品中文字母 | 精品九九久久 | 一区二区三区影院 | 九九久久精品 | 九九热精品免费视频 | 91麻豆精品国产91久久久更新时间 | 国产一区网站 | 狠狠久久伊人中文字幕 | 亚洲精品一区久久久久久 | 妞干网在线观看 | 国产精品视频福利 | 成人在线免费 | 成人在线免费电影 | 黄色一级大片视频 | 一区二视频 | 国产高清在线不卡 | 日日干夜夜干 | 一区二区三区在线播放 | 久久av一区二区三区 |