日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

a,b,c為實數,且a=b+c+1.證明:兩個一元二次方程x2+x+b=0,x2+ax+c=0中至少有一個方程有兩個不相等的實數根.

假設兩個方程都沒有兩個不等的實數根,則

Δ1=1-4b≤0,Δ2=a2-4c≤0,∴Δ12=1-4b+a2-4c≤0.

∵a=b+c+1,∴b+c=a-1.∴1-4(a-1)+a2≤0,

即a2-4a+5≤0.但是a2-4a+5=(a-2)2+1>0,故矛盾.

所以假設不成立,原命題正確,即兩個方程中至少有一個方程有兩個不相等的實數根.


解析:

證明  假設兩個方程都沒有兩個不等的實數根,則

Δ1=1-4b≤0,Δ2=a2-4c≤0,∴Δ12=1-4b+a2-4c≤0.

∵a=b+c+1,∴b+c=a-1.∴1-4(a-1)+a2≤0,

即a2-4a+5≤0.但是a2-4a+5=(a-2)2+1>0,故矛盾.

所以假設不成立,原命題正確,即兩個方程中至少有一個方程有兩個不相等的實數根.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

不等式選講:
已知a,b,c為實數,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2+m-1=0

(Ⅰ)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

(Ⅱ)求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=ax2+bx+c(a,b,c為實數,且a≠0),F(x)=
f(x),x>0
-f(x),x<0

(1)若f(-1)=0,曲線y=f(x)通過點(0,2a+3),且在點(-1,f(-1))處的切線垂直于y軸,求f(x)的表達式;
(2)在(Ⅰ)在條件下,當x∈[-1,1]時,g(x)=kx-f(x)是單調函數,求實數k的取值范圍;
(3)設mn<0,m+n>0,a>0,且f(x)為偶函數,證明F(m)+F(n)>0.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網本題有(1),(2),(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題計分.作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑.
(1)選修4-2:矩陣與變換
如圖所示:△OAB在伸縮變換M作用下變為△OA1B1
(i)求矩陣M的特征值及相應的特征向量;
(ii)求逆矩陣M-1以及(M-120
(2)選修4-4:坐標系與參數方程.
已知曲線C1的參數方程為
x=2sinθ
y=cosθ
(θ為參數),曲線C2的參數方程為
x=2t
y=t+1
(t為參數)
(i)若將曲線C1與C2上各點的橫坐標都縮短為原來的一半,分別得到曲線C1和C2,求出曲線C1和C2的普通方程;
(ii)以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,求過極點且與C2垂直的直線的極坐標方程.
(3)選修4-5:不等式選講
已知a,b,c為實數,且a+b+c+2-2m=0,a2+
b 2
4
+
c 2
9
+m-1=0
(i)求證:a2+
b 2
4
+
c 2
9
(a+b+c) 2
14

(ii)求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

a,b,c為實數,且a=b+c+1.證明:兩個一元二次方程x2+x+b=0,x2+ax+c=0中至少有一個方程有兩個不相等的實數根.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产综合视频在线观看 | 91精品国产欧美一区二区 | 午夜精品亚洲日日做天天做 | 老司机深夜福利在线观看 | 国产精品理论视频 | 免费aaa视频 | 人人澡人人射 | 欧美日韩视频一区二区 | 在线观看日韩 | 久草电影网 | 亚洲国产高清高潮精品美女 | 久久亚洲国产精品日日av夜夜 | av高清在线免费观看 | 国产欧美精品一区aⅴ影院 日韩精品区 | 日本一区二区精品视频 | 国产一区二区三区高清 | 91一区二区 | 久久福利| 色天堂影院 | 黄色网址在线免费观看 | 99成人精品 | 91视频国内| 欧美一级视频 | 又爽又大又黄a级毛片在线视频 | 韩国精品主播一区二区在线观看 | 色综合天天天天做夜夜夜夜做 | 亚洲国产精品一区二区久久 | 日韩四区 | 国内精品国产三级国产在线专 | 精品av| 午夜影院免费视频 | 国产在线一区二区 | 成人欧美一区二区三区黑人孕妇 | 久久久久久九九九九 | 免费看一区二区三区 | 精品久久久久久久久久 | 精品久久网| 男女免费视频 | 国产一区二区不卡在线 | 九九国产 | 成人免费视频在线观看 |