已知:sinβ=,sin(α+β)=1.求sin(2α+β)的值.
科目:高中數學 來源:2011屆高考數學第一輪復習測試題6 題型:044
(理)已知向量m=(sinωx+cosωx,cosωx),n=(cosωx-sinωx,2 sinωx),其中ω>0,函數f(x)=m·n,若f(x)相鄰兩對稱軸間的距離為
.
(1)求ω的值,并求f(x)的最大值及相應x的集合;
(2)在△ABC中,a、b、c分別是A、B、C所對的邊,△ABC的面積S=5,b=4,f(A)=1,求邊a的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
已知橢圓C:+
=1(a>b>0)的離心率為
,過右焦點F且斜率為1的直線交橢圓C于A,B兩點,N為弦AB的中點。
(1)求直線ON(O為坐標原點)的斜率KON ;
(2)對于橢圓C上任意一點M ,試證:總存在角(
∈R)使等式:
=cos
+sin
成立。w.w.w.k.s.5.u.c.o.m
查看答案和解析>>
科目:高中數學 來源: 題型:
已知角A、B、C為△ABC的三個內角,其對邊分別為a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=.
(Ⅰ)若△ABC的面積S=,求b+c的值.(Ⅱ)求b+c的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
在△中,已知
·
=9,sin
=cos
sin
,面積S
=6.
(Ⅰ)求△的三邊的長;
(Ⅱ)設是△
(含邊界)內一點,
到三邊
,
,
的距離分別為x,y和z,求x+y+z的取值范圍.
查看答案和解析>>
科目:高中數學 來源:2010年高考試題(遼寧卷)解析版(文) 題型:解答題
已知函數.
(Ⅰ)討論函數的單調性;
(Ⅱ)設,證明:對任意
,
.
1.選修4-1:幾何證明選講
如圖,的角平分線
的延長線交它的外接圓于點
(Ⅰ)證明:∽△
;
(Ⅱ)若的面積
,求
的大小.
證明:(Ⅰ)由已知條件,可得∠BAE=∠CAD.
因為∠AEB與∠ACB是同弧上的圓周角,所以∠AEB=∠ACD.
故△ABE∽△ADC.
(Ⅱ)因為△ABE∽△ADC,所以,即AB·AC=AD·AE.
又S=AB·ACsin∠BAC,且S=
AD·AE,故AB·ACsin∠BAC=AD·AE.
則sin∠BAC=1,又∠BAC為三角形內角,所以∠BAC=90°.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com