【題目】
設為實數,函數
。
(1)求的單調區間與極值;
(2)求證:當且
時,
。
【答案】(1)見解析;(2)見解析.
【解析】
試題(1)由,知
.令
,得
.列表討論能求出
的單調區間區間及極值.
(2)設,于是
,由(1)知當
時,
最小值為
,于是對任意
,都有
,所以
在
內單調遞增.由此能夠證明
.
試題解析:解:∵f(x)=ex﹣2x+2a,x∈R,
∴f′(x)=ex﹣2,x∈R.
令f′(x)=0,得x=ln2.
于是當x變化時,f′(x),f(x)的變化情況如下表:
故f(x)的單調遞減區間是(﹣∞,ln2),
單調遞增區間是(ln2,+∞),
f(x)在x=ln2處取得極小值,
極小值為f(ln2)=eln2﹣2ln2+2a=2(1﹣ln2+a),無極大值.
(2)證明:設g(x)=ex﹣x2+2ax﹣1,x∈R,
于是g′(x)=ex﹣2x+2a,x∈R.
由(1)知當a>ln2﹣1時,
g′(x)最小值為g′(ln2)=2(1﹣ln2+a)>0.
于是對任意x∈R,都有g′(x)>0,所以g(x)在R內單調遞增.
于是當a>ln2﹣1時,對任意x∈(0,+∞),都有g(x)>g(0).
而g(0)=0,從而對任意x∈(0,+∞),g(x)>0.
即ex﹣x2+2ax﹣1>0,
故ex>x2﹣2ax+1.
科目:高中數學 來源: 題型:
【題目】如圖是我國古代數學家趙爽在為《周髀算經》作注解時給出的“弦圖”.現提供4種顏色給“弦圖”的5個區域涂色,規定每個區域只涂一種顏色,相鄰區域顏色不相同,則不同的涂色方案共有( )
A.48種B.72種C.96種D.144種
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】直線與橢圓
交于
,
兩點,已知
,
,若橢圓的離心率
,又經過點
,
為坐標原點.
(1)求橢圓的方程;
(2)當時,試問:
的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下圖是某省從1月21日至2月24日的新冠肺炎每日新增確診病例變化曲線圖.
若該省從1月21日至2月24日的新冠肺炎每日新增確診人數按日期順序排列構成數列,
的前n項和為
,則下列說法中正確的是( )
A.數列是遞增數列B.數列
是遞增數列
C.數列的最大項是
D.數列
的最大項是
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據國際海洋安全規定:兩國軍艦正常狀況下(聯合軍演除外),在公海上的安全距離為20(即距離不得小于20
),否則違反了國際海洋安全規定.如圖,在某公海區域有兩條相交成60°的直航線
,
,交點是
,現有兩國的軍艦甲,乙分別在
,
上的
,
處,起初
,
,后來軍艦甲沿
的方向,乙軍艦沿
的方向,同時以40
的速度航行.
(1)起初兩軍艦的距離為多少?
(2)試判斷這兩艘軍艦是否會違反國際海洋安全規定?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】Fibonacci數列又稱黃金分割數列,因為當n趨向于無窮大時,其相鄰兩項中的前項與后項的比值越來越接近黃金分割數.已知Fibonacci數列的遞推關系式為
.
(1)證明:Fibonacci數列中任意相鄰三項不可能成等比數列;
(2)Fibonacci數列{an}的偶數項依次構成一個新數列,記為{bn},證明:{bn+1-H2·bn}為等比數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌經銷商在一廣場隨機采訪男性和女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調查結果如下:
微信控 | 非微信控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據以上數據,能否有95%的把握認為“微信控”與“性別”有關?
(2)現從調查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數;
(3)從(2)中抽取的5位女性中,再隨機抽取3人贈送禮品,試求抽取3人中恰有2人位“微信控”的概率.
參考公式: ,其中
.
參考數據:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com