【題目】已知橢圓過點
, 離心率為
,左右焦點分別為
, 過點
的直線
交橢圓于
兩點.
(1)求橢圓C的方程;
(2)當的面積為
時, 求以
為圓心且與直線
相切的圓的方程.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+2x+c,若不等式f(x)<0的解集是{x|-4<x<2}.
(1)求f(x)的解析式;
(2)判斷f(x)在(0,+∞)上的單調性,并用定義證明;
(3)若函數f(x)在區間[m,m+2]上的最小值為-5,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】科學研究表明:人類對聲音有不的感覺,這與聲音的強度單位:瓦
平方米
有關
在實際測量時,常用
單位:分貝
來表示聲音強弱的等級,它與聲音的強度I滿足關系式:
是常數
,其中
瓦
平方米
如風吹落葉沙沙聲的強度
瓦
平方米,它的強弱等級
分貝.
已知生活中幾種聲音的強度如表:
聲音來源
聲音大小 | 風吹落葉沙沙聲 | 輕聲耳語 | 很嘈雜的馬路 |
強度 | |||
強弱等級 | 10 | m | 90 |
求a和m的值
為了不影響正常的休息和睡眠,聲音的強弱等級一般不能超過50分貝,求此時聲音強度I的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,
是函數
(
,
)圖象上的任意兩點,且角
的終邊經過點
,若
時,
的最小值為
.
(1)求函數的解析式;
(2)當時,不等式
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】類比平面幾何中的定理:△ABC中,若DE是△ABC的中位線,則有S△ADE∶S△ABC=1∶4;若三棱錐A-BCD有中截面EFG∥平面BCD,則截得三棱錐的體積與原三棱錐體積之間的關系式為________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數的定義域為區間
,若對于
內任意
,都有
成立,則稱函數
是區間
的“
函數”.
(1)判斷函數(
)是否是“
函數”?說明理由;
(2)已知,求證:函數
(
)是“
函數”;
(3)設函數是
,(
)上的“
函數”,
,且存在
使得
,試探討函數
在區間
上零點個數,并用圖象作出簡要的說明(結果不需要證明).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠共有男女員工500人,現從中抽取100位員工對他們每月完成合格產品的件數統計如下:
每月完成合格產品的件數(單位:百件) | |||||
頻數 | 10 | 45 | 35 | 6 | 4 |
男員工人數 | 7 | 23 | 18 | 1 | 1 |
(1)其中每月完成合格產品的件數不少于3200件的員工被評為“生產能手”.由以上統計數據填寫下面列聯表,并判斷是否有95%的把握認為“生產能手”與性別有關?
非“生產能手” | “生產能手” | 合計 | |
男員工 | |||
女員工 | |||
合計 |
(2)為提高員工勞動的積極性,工廠實行累進計件工資制:規定每月完成合格產品的件數在定額2600件以內的,計件單價為1元;超出件的部分,累進計件單價為1.2元;超出
件的部分,累進計件單價為1.3元;超出400件以上的部分,累進計件單價為1.4元.將這4段中各段的頻率視為相應的概率,在該廠男員工中選取1人,女員工中隨機選取2人進行工資調查,設實得計件工資(實得計件工資=定額計件工資+超定額計件工資)不少于3100元的人數為,求的分布列和數學期望.
附:,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com