日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設f(x)=-x3+ax2+bx+c(a>0),在x=1處取得極大值,
(1)若曲線y=f(x)在點(
1
3
,f(
1
3
))處切線的斜率為
4
3
,求a,b;
(2)若曲線y=f(x)存在斜率為
4
3
的切線.求a的取值范圍;
(3)在(2)的條件下,是否存在實數a,使得對?x∈(-∞,0],都有f(x)≥c.
考點:利用導數研究函數的極值,利用導數研究曲線上某點切線方程
專題:計算題,導數的綜合應用
分析:(1)f(x)=-x3+ax2+bx+c,f′(x)=-3x2+2ax+b,從而得到f′(1)=-3+2a+b=0,f′(
1
3
)=-
1
3
+
2
3
a+b=
4
3
;解出a=1,b=1;驗證即可;
(2)由(1)知,b=3-2a,從而化f′(x)=-3(x-1)[x-(
2
3
a-1)]
,由f(x)在x=1處取得極大值可知
2a
3
-1
<1,再由f′(x)=
4
3
有實根知3x2-2ax+2a-
5
3
=0有實根,從而求a的取值范圍;
(3))(法一)由(2)可知,f(x)在(-∞,
2a
3
-1
)上是減函數,在(
2a
3
-1
,1)上是增函數,在(1,+∞)上是減函數;從而化條件為f(x)min=f(
2a
3
-1
)=
4
27
a3-
4
3
a2+3a-2+c
≥c,
令g(a)=
4
27
a3-
4
3
a2+3a-2
≥0,從而求單調性與最值,從而得到答案;
(法二)化f(x)≥C為-x3+ax2+bx+c≥c,即-x3+ax2+bx≥0,x∈(-∞,0],討論x的取值降冪,從而簡化運算,在x∈(-∞,0)時,可化為x2-ax-b≥0;即x2-ax-3+2a≥0,從而得到a≥
x2-3
x-2
=x+2+
1
x-2
=g(x),再求g(x)的單調性與最值即可.
解答: 解:(1)∵f(x)=-x3+ax2+bx+c,f′(x)=-3x2+2ax+b,
∴f′(1)=-3+2a+b=0,f′(
1
3
)=-
1
3
+
2
3
a+b=
4
3

∴a=1,b=1.
此時,f′(x)=-3x2+2x+1=-(3x+1)(x-1),
∴當x∈(-
1
3
,1)時,f′(x)>0,
當x∈(1,+∞)時,f′(x)<0.
∴滿足條件x=1是極大值點.
∴a=1,b=1.
(2)由(1)知,b=3-2a,
f′(x)=-3(x-1)[x-(
2
3
a-1)]

f′(x)=-3(x-1)[x-(
2
3
a-1)]=0

則 x1=1,x2=
2a
3
-1

∵f(x)在x=1處取得極大值,
2a
3
-1
<1,
∴a<3,
f′(x)=
4
3
有實根,
即3x2-2ax+2a-
5
3
=0有實根.
∴△=4a2-12(2a-
5
3
)≥0,
∴a≤1或a≥5,
又a>0,
綜上,得0<a≤1.
(3)(法一)由(2)可知,
f(x)在(-∞,
2a
3
-1
)上是減函數,在(
2a
3
-1
,1)上是增函數,在(1,+∞)上是減函數,
而x∈(-∞,0],且
2a
3
-1
∈(-1,-
1
3
).
∴f(x)在(-∞,
2a
3
-1
]上是減函數,在(
2a
3
-1
,0]上是增函數,
∴f(x)min=f(
2a
3
-1
)=
4
27
a3-
4
3
a2+3a-2+c
≥c,
得g(a)=
4
27
a3-
4
3
a2+3a-2
≥0,
∵0<a≤1,
g′(a)=
4
9
a3-
8
3
a+3=
4
9
(a-
9
2
)(a-
3
2
)
>0,
∴y=g(a)在(0,1]上是增函數,
∴g(a)max=g(1)=-
5
27
<0,
∴不存在a∈(0,1]的取值,
使f(x)min=g(a)≥0成立,
于是,不存在a∈(0,1]的取值,
使得對?x∈(-∞,0],都有f(x)≥0. 
(法二)f(x)≥C可化為-x3+ax2+bx+c≥c,
即-x3+ax2+bx≥0,x∈(-∞,0],
當x=0時,不等式恒成立;
當x∈(-∞,0)時,上式可化為x2-ax-b≥0;
即x2-ax-3+2a≥0,
∴a≥
x2-3
x-2
=x+2+
1
x-2
=g(x),
∵x≤0,
∴g′(x)=1-
1
(x-2)2
>0,
∴y=g(x)在x∈(-∞,0]上是增函數,
∴g(x)max=g(0)=
3
2

∴a≥
3
2
,與a∈(0,1]矛盾,
∴不存在a∈(0,1]的取值,使得對?x∈(-∞,0],都有f(x)≥0.
點評:本題考查了導數的綜合應用,同時考查了恒成立問題及存在性問題,屬于難題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

函數f(x)=
x-1(x>0)
0(x=0)
x+1(x<0)
,則f(1)+f(-3)的值是(  )
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=-
1
3
x3+2ax2-3a2x+b(0<a<1)
(1)求函數f(x)的單調區間和極值;
(2)當x=
1
2
時,f(x)有極小值
1
3
,求a,b的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=lnx+x2-ax(a為常數).
(1)若x=1是函數f(x)的一個極值點,求a的值;
(2)若對任意的a∈(1,2)存在x0∈[1,2],使不等式f(x0)>mlna恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知二面角A-PC-B為直二面角,且PA⊥平面ABC,求證:△ABC為直角三角形.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
x2
4
+ax+
a
2
  
(1)若函數f(x)在(-∞,-4)上的減函數,求a的值;
(2)當|x|≤2時,記函數f(x)的最小值為g(a),求出g(a)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

2000年世界人口為60億,目前世界人口增長率約為1.84%,如果這種趨勢保持不變,求哪一年人口將長到120億?(lg1.0184=0.0079,lg2=0.3010)

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c,則滿足b=2a,A=25°的△ABC的個數是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數學 來源: 題型:

若cos(α-
π
3
)=
1
3
,則sin(2α-
π
6
)的值是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久国产精品一区二区三区 | 日韩av网站在线观看 | 国产欧美日韩在线视频 | 免费中文字幕 | 国产一级黄色录像 | 国产一区二区福利 | 国产一区免费视频 | 真实的国产乱xxxx在线 | 希岛爱理在线 | 国产精品123区 | 日韩欧美一区在线 | 久久久久久网 | 欧美做受 | 超碰97在线免费观看 | 成人欧美日韩 | 国产精品不卡视频 | 美女扒开腿让人桶爽原神 | 91精品麻豆 | 国产一区免费视频 | 成人激情综合 | 国产免费91 | 蜜臀99久久精品久久久久小说 | 免费视频a | 欧美香蕉视频 | 91久久久精品 | 一区二区三区四区视频 | 国产一区二区免费看 | 成人免费精品 | 国产精品久久久久永久免费看 | 成人在线免费观看网站 | 黄色免费视频网站 | 亚洲人成在线播放 | 国产一区二区免费看 | 国产一级免费视频 | 欧美另类视频 | 欧美激情视频一区二区 | 国产高清一区 | 欧美日韩免费在线 | 亚洲欧美日韩国产精品 | 亚洲免费网站 | 成人动漫视频 |