分析 函數y=ex和函數y=lnx互為反函數,關于直線y=x對稱.設直線y=x+t與y=ex相切于點P(a,b),利用導數的幾何意義求出切點P,利用點到直線的距離公式即可得出.
解答 解:由題意,-1≤x<0,-2≤x-1<-1,f(x)=ef(x-1)=ex,
0≤x<1,-1≤x-1<0,f(x)=ef(x-1)=ex,
…
∴x≥-2時,f(x)=ex.
函數y=ex和函數y=lnx互為反函數,關于直線y=x對稱.由圖象可知:當f(x)在點A處的切線和g(x)在點B處的切線都與y=x平行時,|AB|最小.設A(x1,y1),B(x2,y2),則y1=${e}^{{x}_{1}}$,y2=lnx2,f′(x)=ex,k1=${e}^{{x}_{1}}$=1,可得x1=0,A(0,1);g′(x)=$\frac{1}{x}$,k2=$\frac{1}{{x}_{2}}$=1,則x2=1,B(1,0)
設直線y=x+t與y=lnx相切于點P(a,b),|AB|min=$\sqrt{2}$
故答案為:$\sqrt{2}$.
點評 本題考查了反函數的性質、導數的幾何意義、切線方程、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,-$\frac{3}{2}$)∪(-1,1) | C. | (-∞,-$\frac{3}{2}$) | D. | (-∞,-1)∪(1,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=x與y=$\sqrt{{x}^{2}}$ | B. | y=x-1與y=$\frac{{x}^{2}-1}{x+1}$ | ||
C. | y=x2與y=2x2 | D. | y=x2-4x+6與y=(x-2)2+2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 10 | B. | 20 | C. | 30 | D. | 40 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com