【題目】已知兩個平面垂直,下列命題: ①一個平面內的已知直線必垂直于另一個平面內的任意一條直線.
②一個平面內的已知直線必垂直于另一個平面內的無數條直線.
③一個平面內的任一條直線必垂直于另一個平面.
④一個平面內垂直于交線的直線與另一個平面垂直.
其中正確命題的個數是( )
A.3
B.2
C.1
D.0
【答案】B
【解析】解:考察正方體中互相垂直的兩個平面:面A1ABB1和面ABCD:
對于①:一個平面內的已知直線不一定垂直于另一個平面的任意一條直線.如圖中A1B與AB不垂直;
對于②:一個平面內的已知直線必垂直于另一個平面的無數條直線.這一定是正確的.
如圖中,已知直線A1B,在平面ABCD中,所有與BC平行直線都與它垂直;
對于③:一個平面內的任一條直線不一定垂直于另一個平面;如圖中:A1B;
對于④:過一個平面內任意一點作交線的垂線,利用面面垂直的性質,可知垂線必垂直于另一個平面.
故選:B.
【考點精析】根據題目的已知條件,利用空間中直線與平面之間的位置關系的相關知識可以得到問題的答案,需要掌握直線在平面內—有無數個公共點;直線與平面相交—有且只有一個公共點;直線在平面平行—沒有公共點.
科目:高中數學 來源: 題型:
【題目】設定點M(3, )與拋物線y2=2x上的點P的距離為d1 , P到拋物線準線l的距離為d2 , 則d1+d2取最小值時,P點的坐標為( )
A.(0,0)
B.(1, )
C.(2,2)
D.( ,-
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過點P(3,2)且在兩坐標軸上的截距相等的直線方程是( )
A.x﹣y﹣1=0
B.x+y﹣5=0或2x﹣3y=0
C.x+y﹣5=0
D.x﹣y﹣1=0或2x﹣3y=0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x+ ﹣1(x≠0),k∈R.
(1)當k=3時,試判斷f(x)在(﹣∞,0)上的單調性,并用定義證明;
(2)若對任意x∈R,不等式f(2x)>0恒成立,求實數k的取值范圍;
(3)當k∈R時,試討論f(x)的零點個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P為線段AD(含端點)上一個動點,設 ,
,則得到函數y=f(x).
(Ⅰ)求f(1)的值;
(Ⅱ)對于任意a∈(0,+∞),求函數f(x)的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,PB⊥AC,AD⊥CD,且AD=CD=2 ,PA=2,點M在線段PD上. (Ⅰ)求證:AB⊥平面PAC;
(Ⅱ)若二面角M﹣AC﹣D的大小為45°,試確定點M的位置.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了解高一期末數學考試的情況,從高一的所有學生數學試卷中隨機抽取n份試卷進行成績分析,得到數學成績頻率分布直方圖(如圖所示),其中成績在[50,60)的學生人數為6.
(Ⅰ)估計所抽取的數學成績的眾數;
(Ⅱ)用分層抽樣的方法在成績為[80,90)和[90,100]這兩組中共抽取5個學生,并從這5個學生中任取2人進行點評,求分數在[90,100]恰有1人的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某投資公司計劃投資A,B兩種金融產品,根據市場調查與預測,A產品的利潤y1與投資金額x的函數關系為y1=18﹣ ,B產品的利潤y2與投資金額x的函數關系為y2=
(注:利潤與投資金額單位:萬元).
(1)該公司已有100萬元資金,并全部投入A,B兩種產品中,其中x萬元資金投入A產品,試把A,B兩種產品利潤總和表示為x的函數,并寫出定義域;
(2)在(1)的條件下,試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設 1=a1≤a2≤…≤a7 , 其中a1 , a3 , a5 , a7 成公比為q的等比數列,a2 , a4 , a6成公差為1的等差數列,則q的最小值是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com