【題目】環(huán)保部門要對(duì)所有的新車模型進(jìn)行廣泛測(cè)試,以確定它的行車?yán)锍痰牡燃?jí),右表是對(duì) 100 輛新車模型在一個(gè)耗油單位內(nèi)行車?yán)锍蹋▎挝唬汗铮┑臏y(cè)試結(jié)果.
(Ⅰ)做出上述測(cè)試結(jié)果的頻率分布直方圖,并指出其中位數(shù)落在哪一組;
(Ⅱ)用分層抽樣的方法從行車?yán)锍淘趨^(qū)間[38,40)與[40,42)的新車模型中任取5輛,并從這5輛中隨機(jī)抽取2輛,求其中恰有一個(gè)新車模型行車?yán)锍淘赱40,42)內(nèi)的概率.
【答案】(Ⅰ)圖略,中位數(shù)在區(qū)間.(Ⅱ)
【解析】
(1)畫出頻率分布直方圖后,找到頻率總和為時(shí)對(duì)應(yīng)的分組區(qū)間;
(2)先利用分層抽樣計(jì)算每組內(nèi)抽取的輛數(shù),然后對(duì)車輛進(jìn)行標(biāo)記,利用古典概型計(jì)算目標(biāo)事件的概率.
(Ⅰ)由題意可畫出頻率分布直方圖如圖所示:
前組頻率總和為
,第
組頻率為
,且
,則由圖可知,中位數(shù)在區(qū)間
.
(Ⅱ)由題意,設(shè)從中選取的車輛為
,從
中選取的車輛為
,
則從這5輛車中抽取2輛的所有情況有10種,分別為,
其中符合條件的有6種,,所以所求事件的概率為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,已知
平面
,
是邊長(zhǎng)為
的正三角形,
、
分別為
、
的中點(diǎn).
(1)若,求直線
與
所成角的余弦值;
(2)若平面平面
,求
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】追求人類與生存環(huán)境的和諧發(fā)展是中國(guó)特色社會(huì)主義生態(tài)文明的價(jià)值取向.為了改善空氣質(zhì)量,某城市環(huán)保局隨機(jī)抽取了一年內(nèi)100天的空氣質(zhì)量指數(shù)()的檢測(cè)數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:
空氣質(zhì)量 | 優(yōu) | 良 | 輕度污染 | 中度污染 | 重度污染 | 嚴(yán)重污染 |
天數(shù) | 6 | 14 | 18 | 27 | 25 | 10 |
(1)從空氣質(zhì)量指數(shù)屬于,
的天數(shù)中任取3天,求這3天中空氣質(zhì)量至少有2天為優(yōu)的概率;
(2)已知某企業(yè)每天的經(jīng)濟(jì)損失(單位:元)與空氣質(zhì)量指數(shù)
的關(guān)系式為
,試估計(jì)該企業(yè)一個(gè)月(按30天計(jì)算)的經(jīng)濟(jì)損失的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求
的單調(diào)區(qū)間;
(2)證明:(i);
(ii)對(duì)任意,
對(duì)
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為2,過點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的右焦點(diǎn)為F,定點(diǎn),過點(diǎn)F且斜率不為零的直線l與橢圓交于A,B兩點(diǎn),以線段AP為直徑的圓與直線
的另一個(gè)交點(diǎn)為Q,證明:直線BQ恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為常數(shù),
,函數(shù)
,
(其中
是自然對(duì)數(shù)的底數(shù)).
(1)過坐標(biāo)原點(diǎn)作曲線
的切線,設(shè)切點(diǎn)為
,求證:
;
(2)令,若函數(shù)
在區(qū)間
上是單調(diào)函數(shù),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,且曲線
與
恰有一個(gè)公共點(diǎn).
(Ⅰ)求曲線的極坐標(biāo)方程;
(Ⅱ)已知曲線上兩點(diǎn)
,
滿足
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(k+)lnx+
,k∈[4,+∞),曲線y=f(x)上總存在兩點(diǎn)M(x1,y1),N(x2,y2),使曲線y=f(x)在M,N兩點(diǎn)處的切線互相平行,則x1+x2的取值范圍為
A. (,+∞) B. (
,+∞) C. [
,+∞) D. [
,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com