日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數列{a2k-1}是等差數;數列{a2k}是等比數列;(其中k∈N*);
(II)記an=f(n),對任意的正整數n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.
分析:(I)由an+2=(
i
+
jn
)•
Pn
=(1+cos2
2
)an+sin
2
,知a2k+1-a2k-1=1.由此能夠證明數列{a2k}是首項為2、公比為2的等比數列.
(II)由a2k-1=k,a2k=2k,知數列{an}的通項公式為an=
n+1
2
,n=2k-1(k∈N*)
2
n
2
,n=2k(k∈N*).
,由此能夠求出λ的取值范圍是[
5
8
,1]
解答:解:(I)an+2=(
i
+
jn
)•
Pn
=[(1,0)+(cos2
2
,sin
2
)]•(an,sin
2
)=(1+cos2
2
,sin
2
)•(an,sin
2
)

=(1+cos2
2
)an+sin
2
,…(2分)
當n=2k-1(k∈N*)時,
a2k+1=[1+cos2
(2k-1)π
2
]a2k-1+sin2
2k-1
2
π
=a2k-1+1,即a2k+1-a2k-1=1.
所以數列{a2k-1}是首項為1、公差為1的等差數列,…(4分)當n=2k(k∈N*)時,a2k+2=(1+cos2
2kπ
2
)a2k+sin2
2kπ
2
=2a2k

所以數列{a2k}是首項為2、公比為2的等比數列,…(6分)
(II)由(I)可知:a2k-1=k,a2k=2k
故數列{an}的通項公式為an=
n+1
2
,n=2k-1(k∈N*)
2
n
2
,n=2k(k∈N*).
…(7分)
當n為奇數時,(cosnπ)[f(n2)-λf(2n)]≥0?λ≥
f(n2)
f(2n)
=
n2+1
2n+1

令g(n)=
n2+1
2n-1
⇒g(n+1)-g(n)=
2n-n2
2n
<0⇒g(n+1)<g(n)
所以g(n)為單調遞減函數,∴g(n)max=g(3)=
5
8
⇒λ≥
5
8
…(10分)
當n為偶數時,(cosnπ)[f(n2)-λf(2n)]≥0?λ≤
f(n2)
f(2n)
=2
(n-1)2-1
2

令h(n)=2
(n-1)2-1
2
,顯然h(n)為單調遞增函數,
h(n)min=h(2)=1⇒λ≤1
綜上,λ的取值范圍是[
5
8
,1]
…(12分)
點評:本題考查數列的綜合運用,解題時要認真審題,仔細解答,注意挖掘題設中的隱含條件,合理地進行等價轉化.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知
i
=(1,0),
j
=(0,1),
a
=
i
-2
j
b
=
i
+m
j
,給出下列說法:
①若
a
b
的夾角為銳角,則m<
1
2

②當且僅當m=
1
2
時,
a
b
互相垂直;
a
b
不可能是方向相反的兩個向量;
④若|
a
|=|
b
|
,則m=-2.
其中正確的序號是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•浦東新區二模)已知
i
=(1,0),
c
=(0,
2
)
,若過定點A(0,
2
)
、以
i
c
(λ∈R)為法向量的直線l1與過點B(0,-
2
)
c
i
為法向量的直線l2相交于動點P.
(1)求直線l1和l2的方程;
(2)求直線l1和l2的斜率之積k1k2的值,并證明必存在兩個定點E,F,使得|
PE
|+|
PF
|
恒為定值;
(3)在(2)的條件下,若M,N是l:x=2
2
上的兩個動點,且
EM
FN
=0
,試問當|MN|取最小值時,向量
EM
+
FN
EF
是否平行,并說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知
i
=(1,0),
jn
=(cos2
2
,sin
2
),
Pn
=(an,sin
2
)(n∈N+),數列{an}
滿足:a1=1,a2=1,an+2=(i+
jn
)•
Pn

(I)求證:數列{a2k-1}是等差數;數列{a2k}是等比數列;(其中k∈N*);
(II)記an=f(n),對任意的正整數n≥2,不等式(cosnπ)[f(n2)-λf(2n)]≤0,求λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知
i
=(1,0),
j
=(0,1),
a
=
i
-2
j
b
=
i
+m
j
,給出下列說法:
①若
a
b
的夾角為銳角,則m<
1
2

②當且僅當m=
1
2
時,
a
b
互相垂直;
a
b
不可能是方向相反的兩個向量;
④若|
a
|=|
b
|
,則m=-2.
其中正確的序號是(  )
A.①②③B.①②③④C.②④D.②③

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久久精品国产 | 日韩城人免费 | 久久久久久久99精品免费观看 | 免费观看一级黄色片 | 国产目拍亚洲精品99久久精品 | 精品视频久久 | 久久久久久一区 | 亚洲男人天堂2024 | 在线观看欧美一区二区三区 | 成人国产精品 | 中文字幕在线电影 | 国产精品99视频 | 做爱网站 | 一级一级特黄女人精品毛片 | 欧美偷拍综合 | 国产在线不卡观看 | 黄色污污在线观看 | 欧美大片在线免费观看 | 亚洲一区二区三区观看 | 欧美色性 | 欧美一区视频 | 日本免费不卡 | 日韩精品一区二区三区在线 | 亚洲欧美日韩在线 | 欧美一级片| 黄色免费网 | 日韩欧美在线观看视频网站 | 青青草狠狠干 | 在线欧美视频 | 久久一区二区三区四区 | 精品亚洲一区二区三区 | 成人免费一区二区三区视频网站 | 欧美性猛交一区二区三区精品 | 国产精品不卡一区 | 久久精品欧美一区二区三区不卡 | 91在线精品一区二区 | 中文字幕视频网站 | 午夜草逼| 久久国产精品99国产 | 国产欧美日韩一区二区三区 | 麻豆精品一区二区 |