日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
(2009•浦東新區二模)已知
i
=(1,0),
c
=(0,
2
)
,若過定點A(0,
2
)
、以
i
c
(λ∈R)為法向量的直線l1與過點B(0,-
2
)
c
i
為法向量的直線l2相交于動點P.
(1)求直線l1和l2的方程;
(2)求直線l1和l2的斜率之積k1k2的值,并證明必存在兩個定點E,F,使得|
PE
|+|
PF
|
恒為定值;
(3)在(2)的條件下,若M,N是l:x=2
2
上的兩個動點,且
EM
FN
=0
,試問當|MN|取最小值時,向量
EM
+
FN
EF
是否平行,并說明理由.
分析:(1)根據所給直線上的定點坐標以及法向量,即可寫出兩直線方程.
(2)根據(1)中所求直線l1和l2的方程,可分別求出兩直線的斜率,再計算k1k2,為定值
1
2
,再用p點坐標表示k1k2,與前面所求k1k2的值相等,即可得到P點的軌跡方程.為橢圓,根據橢圓定義,可知橢圓上的點到兩個焦點的距離之和為定植,所以必存在兩個定點E,F,使得|
PE
|+|
PF
|
恒為定值.
(3)因為M,N的橫坐標相同,設出它們的縱坐標,先把|MN|用M,N的縱坐標表示,根據且
EM
FN
=0
,求出M,N縱坐標的關系式,代入|MN|,即可求出|MN|的最小值,以及相應的M,N縱坐標,并據此求出向量
EM
+
FN
的坐標,根據兩向量平行的坐標關系,即可判斷向量
EM
+
FN
EF
是否平行.
解答:解:(1)直線l1的法向量
n1
=( 1 , -
2
λ )
,l1的方程:x-
2
λ ( y-
2
 )=0

即為x-
2
λy+2λ=0

直線l2的法向量
n1
=( λ , 
2
 )
,l2的方程:λx+
2
 ( y+
2
 )=0

即為λx+
2
y+2=0
. 
(2)k1k2=
1
2
λ
•( -
λ
2
 )=-
1
2
.   
設點P的坐標為(x,y),由k1k2=
y-
2
x
y+
2
x
=-
1
2
,得
x2
4
+
y2
2
=1

由橢圓的定義的知存在兩個定點E、F,使得|
PE
|+|
PF|
恒為定值4.
此時兩個定點E、F為橢圓的兩個焦點.
(3)設M ( 2
2
 , y1)
N ( 2
2
 , y2)
,則
EM
=( 3
2
 , y1)
FN
=( 
2
 , y2)

EM
FN
=0
,得y1y2=-6<0.
|MN|2=(y1-y22=y12+y22-2y1y2≥-2y1y2-2y1y2=-4y1y2=24;
當且僅當
y1=
6
  
y2=-
6
y1=-
6
y2=
6
 
時,|MN|取最小值
6
EM
+
FN
=( 4
2
 , y1+y2)=( 4
2
 , 0 )=2
EF
,故
EM
+
FN
EF
平行.
點評:本題主要考查了橢圓定義的應用,以及直線與圓錐曲線相交弦長的求法.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2009•浦東新區一模)如圖:某污水處理廠要在一個矩形污水處理池(ABCD)的池底水平鋪設污水凈化管道(Rt△FHE,H是直角頂點)來處理污水,管道越短,鋪設管道的成本越低.設計要求管道的接口H是AB的中點,E,F分別落在線段BC,AD上.已知AB=20米,AD=10
3
米,記∠BHE=θ.
(1)試將污水凈化管道的長度L表示為θ的函數,并寫出定義域;
(2)若sinθ+cosθ=
3
+1
2
,求此時管道的長度L;
(3)問:當θ取何值時,鋪設管道的成本最低?并求出此時管道的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•浦東新區一模)已知數列{an}是等比數列,其前n項和為Sn,若S2=12,S3=a1-6,則
limn→∞
Sn
=
16
16

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•浦東新區一模)函數y=2sin2x的最小正周期為
π
π

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•浦東新區一模)對于函數f1(x),f2(x),h(x),如果存在實數a,b使得h(x)=a•f1(x)+b•f2(x),那么稱h(x)為f1(x),f2(x)的生成函數.
(1)下面給出兩組函數,h(x)是否分別為f1(x),f2(x)的生成函數?并說明理由.
第一組:f1(x)=sinx,f2(x)=cosx,h(x)=sin(x+
π
3
)

第二組:f1(x)=x2-x,f2(x)=x2+x+1,h(x)=x2-x+1.
(2)設f1(x)=log2x,f2(x)=log
1
2
x,a=2,b=1
,生成函數h(x).若不等式h(4x)+t•h(2x)<0在x∈[2,4]上有解,求實數t的取值范圍.
(3)設f1(x)=x(x>0),f2(x)=
1
x
(x>0)
,取a>0,b>0生成函數h(x)圖象的最低點坐標為(2,8).若對于任意正實數x1,x2且x1+x2=1,試問是否存在最大的常數m,使h(x1)h(x2)≥m恒成立?如果存在,求出這個m的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•浦東新區二模)在△ABC中,A、B、C所對的邊分別為a、b、c已知a=2
3
 , c=2
,且
.
sinCsinB0
0b-2c
cosA01
.
=0
,求△ABC的面積.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美日韩视频在线 | 在线播放一区 | 久久精品一区二区三区不卡牛牛 | 日韩理论视频 | 色婷婷一区二区三区四区 | 91在线精品视频 | 青青青免费在线视频 | 日韩欧美手机在线 | 日本成人中文字幕 | 欧美日韩高清丝袜 | 成人超碰| 日韩影院在线 | 岛国av免费看 | 亚洲精品久久久久久久久 | 日本视频不卡 | 亚洲成人在线观看视频 | 精品一二三区在线观看 | 91成人免费在线视频 | 欧美多人在线 | www.亚洲精品 | 91网站在线看 | 色免费在线观看 | 色婷婷综合在线视频 | 日韩成人影院 | 夜夜久久 | 欧美日本在线观看 | 午夜亚洲 | 亚洲欧洲综合av | 懂色av中文一区二区三区天美 | 国产一区二区三区久久久久久久 | www.国产 | 欧美在线操 | 一级做a爰| 亚洲精品久久久久久一区二区 | 欧美成人精品 | 伊人激情网 | 欧美午夜视频在线观看 | 成人av网站免费观看 | 久久久一区二区 | 国产成人精品免高潮在线观看 | 国产高清免费 |