日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD
PA=BC=1,PD=AB=,E、F分別為線段PDBC的中點(diǎn).

(Ⅰ) 求證:CE∥平面PAF
(Ⅱ)在線段BC上是否存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請(qǐng)說(shuō)明理由.
(Ⅰ)先證明EC∥HF即可              (Ⅱ)存在

試題分析:(1)取PA中點(diǎn)為H,連結(jié)CE、HE、FH,
因?yàn)镠、E分別為PA、PD的中點(diǎn),所以HE∥AD,,
因?yàn)锳BCD是平行四邊形,且F為線段BC的中點(diǎn) , 所以FC∥AD,
所以HE∥FC, 四邊形FCEH是平行四邊形 ,所以EC∥HF
又因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824013057103965.png" style="vertical-align:middle;" />   
所以CE∥平面PAF.        
(2)因?yàn)樗倪呅蜛BCD為平行四邊形且∠ACB=90°,

所以CA⊥AD ,又由平面PAD⊥平面ABCD可得 CA⊥平面PAD , 
所以CA⊥PA , 由PA=AD=1,PD=可知,PA⊥AD,                   
所以可建立如圖所示的平面直角坐標(biāo)系A(chǔ)-xyz, 因?yàn)镻A=BC=1,AB=所以AC="1" .     
所以.
假設(shè)BC上存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°,
設(shè)點(diǎn)G的坐標(biāo)為(1,a,0),    所以
設(shè)平面PAG的法向量為
 所以
設(shè)平面PCG的法向量為
所以 ,       
因?yàn)槠矫鍼AG和平面PGC所成二面角的大小為60°,所以
  所以所以
所以線段BC上存在一點(diǎn)G,使得平面PAG和平面PGC所成二面角的大小為60°.
點(diǎn)G即為B點(diǎn).
點(diǎn)評(píng):本題考查線面平行,考查面面角,考查學(xué)生的計(jì)算能力,正確作出面面角是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐中,底面為正方形,
平面為棱的中點(diǎn).

(1)求證:平面平面
(2)求二面角的余弦值.
(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線上有兩個(gè)點(diǎn)在平面外,則(   )
A.直線上至少有一個(gè)點(diǎn)在平面內(nèi)
B.直線上有無(wú)窮多個(gè)點(diǎn)在平面內(nèi)
C.直線上所有點(diǎn)都在平面外
D.直線上至多有一個(gè)點(diǎn)在平面內(nèi)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知菱形,其邊長(zhǎng)為2,繞著順時(shí)針旋轉(zhuǎn)得到的中點(diǎn).

(1)求證:平面
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AE⊥平面ABC,AE∥BD,AB=BC=CA=BD=2AE,F(xiàn)為CD中點(diǎn).

(Ⅰ)求證:EF⊥平面BCD;
(Ⅱ)求二面角C-DE-A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,在棱長(zhǎng)為2的正方體內(nèi)(含正方體表面)任取一點(diǎn),則的概率(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直三棱柱ABC-A1B1C1中,AD⊥平面A1BC,其垂足D落在直線A1B上.

(1)求證:平面A1BC⊥平面ABB1A1
(2)若,AB=BC=2,P為AC中點(diǎn),求三棱錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn)。
求證:

(1)PA∥平面BDE
(2)平面PAC平面BDE

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在長(zhǎng)方體中,中點(diǎn).(Ⅰ)證明:;(Ⅱ)求與平面所成角的正弦值;(Ⅲ)在棱上是否存在一點(diǎn),使得∥平面?若存在,求的長(zhǎng);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 一级少妇片 | 国产1页| 久久久国产精品入口麻豆 | 欧美日韩中文国产一区发布 | 91香蕉视频 | 四虎.com | 国产成人午夜片在线观看高清观看 | 青草青草久热精品视频在线观看 | 中文字幕本久久精品一区 | 银杏成人影院在线观看 | 日日爱夜夜爽 | 男女视频在线观看 | 成人黄色在线视频 | 色片在线免费观看 | 国产小视频在线播放 | 久草在线在线精品观看 | 国产精品主播 | 国产精品一区在线观看你懂的 | 国产精品毛片一区二区在线看 | 91.com在线观看 | 欧美日韩国产成人在线 | 久久久久久久国产精品 | 午夜精品久久久久 | 黄网站色大毛片 | 国产区亚洲 | 精品久久久久香蕉网 | 久久久精彩视频 | 最新中文字幕 | 91社区在线高清 | 欧美一级欧美三级在线观看 | 国产一区二区三区免费观看 | 91视频免费看网站 | 国产精品一区二区麻豆 | 欧美激情国产日韩精品一区18 | 一区二区久久 | 国产精品一区免费在线观看 | 成人在线播放 | 成人在线看片 | 色激情五月 | 精品久久中文字幕 | 久久久久久久久久久久免费 |