【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD是正方形,側棱PD⊥底面ABCD,PD=DC,E是PC的中點,作EF⊥PB交PB于點F.
(1)證明PA∥平面EDB;
(2)證明PB⊥平面EFD;
(3)求二面角C﹣PB﹣D的大。
【答案】
(1)解:方法一:證明:連接AC,AC交BD于O,連接EO.
∵底面ABCD是正方形,∴點O是AC的中點
在△PAC中,EO是中位線,∴PA∥EO
而EO平面EDB且PA平面EDB,
所以,PA∥平面EDB
方法二:如圖所示建立空間直角坐標系,D為坐標原點,設DC=a.
證明:連接AC,AC交BD于G,連接EG.
依題意得 .
∵底面ABCD是正方形,∴G是此正方形的中心,故點G的坐標為 且
.
∴ ,這表明PA∥EG.
而EG平面EDB且PA平面EDB,∴PA∥平面EDB
(2)解:方法一,證明:
∵PD⊥底面ABCD且DC底面ABCD,∴PD⊥DC
∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜邊PC的中線,
∴DE⊥PC.①
同樣由PD⊥底面ABCD,得PD⊥BC.
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.
而DE平面PDC,∴BC⊥DE.②
由①和②推得DE⊥平面PBC.
而PB平面PBC,∴DE⊥PB
又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD
方法二:證明;依題意得B(a,a,0), .
又 ,故
.
∴PB⊥DE.
由已知EF⊥PB,且EF∩DE=E,所以PB⊥平面EFD
(3)解:方法一:由(2)知,PB⊥DF,故∠EFD是二面角C﹣PB﹣D的平面角.
由(2)知,DE⊥EF,PD⊥DB.
設正方形ABCD的邊長為a,
則
,
.
在Rt△PDB中, .
在Rt△EFD中, ,∴
.
所以,二面角C﹣PB﹣D的大小為
方法二:解:設點F的坐標為(x0,y0,z0), ,則(x0,y0,z0﹣a)=λ(a,a,﹣a).
從而x0=λa,y0=λa,z0=(1﹣λ)a.所以 .
由條件EF⊥PB知, ,即
,解得
∴點F的坐標為 ,且
,
∴
即PB⊥FD,故∠EFD是二面角C﹣PB﹣D的平面角.
∵ ,且
,
,
∴ .
∴ .
所以,二面角C﹣PB﹣D的大小為 .
【解析】法一:(1)連接AC,AC交BD于O,連接EO要證明PA∥平面EDB,只需證明直線PA平行平面EDB內的直線EO;(2)要證明PB⊥平面EFD,只需證明PB垂直平面EFD內的兩條相交直線DE、EF,即可;(3)必須說明∠EFD是二面角C﹣PB﹣D的平面角,然后求二面角C﹣PB﹣D的大。ǘ喝鐖D所示建立空間直角坐標系,D為坐標原點,設DC=a.(1)連接AC,AC交BD于G,連接EG,求出 ,即可證明PA∥平面EDB;(2)證明EF⊥PB,
,即可證明PB⊥平面EFD;(3)求出
,利用
,求二面角C﹣PB﹣D的大小.
科目:高中數學 來源: 題型:
【題目】2017年年底,某商業集團根據相關評分標準,對所屬20家商業連鎖店進行了年度考核評估,并依據考核評估得分(最低分60分,最高分100分)將這些連鎖店分別評定為A,B,C,D四個類型,其考核評估標準如下表:
評估得分 | [60,70) | [70,80) | [80,90) | [90,100] |
評分類型 | D | C | B | A |
考核評估后,對各連鎖店的評估分數進行統計分析,得其頻率分布直方圖如下:
(Ⅰ)評分類型為A的商業連鎖店有多少家;
(Ⅱ)現從評分類型為A,D的所有商業連鎖店中隨機抽取兩家做分析,求這兩家來自同一評分類型的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,從參加環保知識競賽的學生中抽出40名,將其成績(均為整數)整理后畫出的頻率分布直方圖如下:
觀察圖形,回答下列問題:
(1)估計這次環保知識競賽成績的中位數;
(2)從成績是80分以上(包括80分)的學生中選兩人,求他們在同一分數段的概率?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有下列命題:
①乘積(a+b+c+d)(p+q+r)(m+n)展開式的項數是24;
②由1、2、3、4、5組成沒有重復數字且1、2都不與5相鄰的五位數的個數是36;
③某會議室第一排共有8個座位,現有3人就座,若要求每人左右均有空位,那么不同的坐法種數為24;
④已知(1+x)8=a0+a1x+…+a8x8 , 其中a0 , a1 , …,a8中奇數的個數為2.
其中真命題的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給定兩個長度為1的平面向量 和
,它們的夾角為120°.如圖所示,點C在以O為圓心的圓弧
上變動.若
,其中x,y∈R,試求x+y的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為預防H1N1病毒暴發,某生物技術公司研制出一種新流感疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于90%,則認為測試沒有通過),公司選定2000個流感樣本分成三組,測試結果如表:
A組 | B組 | C組 | |
疫苗有效 | 673 | x | y |
疫苗無效 | 77 | 90 | z |
已知在全體樣本中隨機抽取1個,抽到B組疫苗有效的概率是0.33.
(1)求x的值;
(2)現用分層抽樣的方法在全體樣本中抽取360個測試結果,問應在C組抽取多少個?
(3)已知y≥465,z≥25,求不能通過測試的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數y=Asin(ωx+φ)(ω>0,||< ,x∈R)的部分圖象如圖所示,則函數表達式為( )
A.y=﹣4sin( )
B.y=4sin( )
C.y=﹣4sin( )
D.y=4sin( )
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com