【題目】已知圓與直線
相交于
、
兩點,
為原點,若
.
(1)求實數的值;
(2)求的面積.
科目:高中數學 來源: 題型:
【題目】設函數.
(1)若,
,求函數
的極值;
(2)若是函數
的一個極值點,試求出
關于
的關系式(即用
表示
),并確定
的單調區間;(提示:應注意對
的取值范圍進行討論)
(3)在(2)的條件下,設,函數
,若存在
使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是梯形,
,
,
是正三角形,
為
的中點,平面
平面
.
(1)求證:平面
;
(2)在棱上是否存在點
,使得二面角
的余弦值為
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列{an}的前n項和為Sn,等比數列{bn}的前n項和為Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通項公式;
(2)若T3=21,求S3.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,以原點為圓心,橢圓的短半軸為半徑的圓與直線
相切.
(1)求橢圓的方程;
(2)設,
,
是橢圓
上關于
軸對稱的任意兩個不同的點,連結
交橢圓
于另一點
,證明:直線
與
軸相交于定點
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓:
的左右焦點分別為
,
,上頂點為
.
(Ⅰ)若.
(i)求橢圓的離心率;
(ii)設直線與橢圓
的另一個交點為
,若
的面積為
,求橢圓
的標準方程;
(Ⅱ)由橢圓上不同三點構成的三角形稱為橢圓的內接三角形,當
時,若以
為直角頂點的橢圓
的內接等腰直角三角形恰有3個,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com