【題目】設(shè)函數(shù),其中e為自然對數(shù)的底數(shù).
(1)當(dāng)a=0時,求函數(shù)f (x)的單調(diào)減區(qū)間;
(2)已知函數(shù)f (x)的導(dǎo)函數(shù)f (x)有三個零點x1,x2,x3(x1 x2 x3).①求a的取值范圍;②若m1,m2(m1 m2)是函數(shù)f (x)的兩個零點,證明:x1m1x1 1.
【答案】(1);(2)①
②證明見解析
【解析】
(1)當(dāng)時,
,令
,即可求得單調(diào)減區(qū)間;
(2)①,令
,將
有三個零點轉(zhuǎn)化為
有三個零點,對
求導(dǎo),可得
的單調(diào)性,進(jìn)而得到
的范圍;
②將有兩個零點轉(zhuǎn)化為方程
有兩個零點,則可得
,
,進(jìn)而得到
,
,從而得證
(1)當(dāng)時,
,
,
令,可得
,
的單調(diào)減區(qū)間為
(2)①由題,,
,
,設(shè)
,
是
的三個零點,
,
當(dāng)時,
,則
單調(diào)遞減,不符合條件;
當(dāng)時,令
,則
,
在
,
單調(diào)遞增,在
,
單調(diào)遞減,
,
,即
,
,
②是
的兩個零點,令
,則方程
的兩根分別為
,
,
,
,
,即
,
,
由①,
,
又,
,即
,
故
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)
.
(1)求實數(shù)的值,使得
為奇函數(shù);
(2)若關(guān)于的方程
有兩個不同實數(shù)解,求
的取值范圍;
(3)若關(guān)于的不等式
對任意
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點,AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點
為極點,以
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的極坐標(biāo)方程;
(2)射線與曲線
分別交于
兩點(異于原點
),定點
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓焦點在
軸上,離心率為
,上焦點到上頂點距離為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線與橢圓
交與
兩點,
為坐標(biāo)原點,
的面積
,則
是否為定值,若是求出定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是圓
的直徑,點
是圓
上異于
,
的點,直線
平面
,
,
分別是
,
的中點.
(Ⅰ)記平面與平面
的交線為
,試判斷直線
與平面
的位置關(guān)系,并加以證明;
(Ⅱ)設(shè),求二面角
大小的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是某公司2018年1月至12月空調(diào)銷售任務(wù)及完成情況的氣泡圖,氣泡的大小表示完成率的高低,如10月份銷售任務(wù)是400臺,完成率為90%,則下列敘述不正確的是( )
A. 2018年3月的銷售任務(wù)是400臺
B. 2018年月銷售任務(wù)的平均值不超過600臺
C. 2018年第一季度總銷售量為830臺
D. 2018年月銷售量最大的是6月份
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),動點
到定點
的距離與
到定直線
的距離之比為
(1)求動點的軌跡
的方程;
(2)若軌跡上的動點
到定點
的距離的最小值為1,求
的值;
(3)設(shè)點、
是軌跡
上兩個動點,直線
、
與軌跡
的另一交點分別為
、
,且直線
、
的斜率之積等于
,問四邊形
的面積
是否為定值?請說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),下列命題:
①既不是奇函數(shù),也不是偶函數(shù)
②若是三角形的內(nèi)角,則
是增函數(shù)
③若是三角形的內(nèi)角, 則
有最大值而無最小值
④的最小正周期是
其中真命題的序號是( )
A.①②B.①③C.②③D.②④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com