【題目】已知函數.
(1)若不等式的解集為
,求實數
的值;
(2)若在(1)的條件下,存在實數,使
成立,求實數
的取值范圍.
【答案】(1);(2)
.
【解析】
(1)原不等式可化為|2x﹣a|≤6﹣a,解得a﹣3≤x≤3.再根據不等式f(x)≤6的解集為[﹣2,3],可得a﹣3=﹣2,從而求得a的值.
(2)由題意可得|t﹣1|+|2t+1|+2≤m,根據函數y=|t﹣1|+|2t+1|+2,得y的最小值,從而求得m的范圍.
解:(1)原不等式可化為|2x﹣a|≤6﹣a,
∴,
解得a﹣3≤x≤3.
再根據不等式f(x)≤6的解集為[﹣2,3],可得a﹣3=﹣2,
∴a=1.
(2)∵f(x)=|2x﹣1|+1,f()≤m﹣f(﹣t),
∴|t﹣1|+1≤m﹣(|﹣2t﹣1|+1),
∴|t﹣1|+|2t+1|+2≤m,
∵y=|t﹣1|+|2t+1|+2,
∴ymin=3.5,
∴m≥3.5,即m的范圍是[3.5,+∞).
科目:高中數學 來源: 題型:
【題目】已知為坐標原點,點
在圓
:
上.
(1)求實數的值;
(2)求過圓心且與直線
平行的直線的方程;
(3)過點作互相垂直的直線
,
,
與圓
交于
兩點,
與圓
交于
兩點,求
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=4x,直線l交于A,B兩點,O為坐標原點,直線OA,OB的斜率分別為k1,k2,若k1k2=﹣2,則△AOB面積的最小值為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數).以
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
(
),將曲線
向左平移2個單位長度得到曲線
.
(1)求曲線的普通方程和極坐標方程;
(2)設直線與曲線
交于
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數方程為(
為參數),以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2:ρ2﹣4ρcosθ+3=0.
(1)求曲線C1的一般方程和曲線C2的直角坐標方程;
(2)若點P在曲線C1上,點Q曲線C2上,求|PQ|的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為:
(
為參數),以坐標原點為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為:
.
(Ⅰ)求直線與曲線
公共點的極坐標;
(Ⅱ)設過點的直線
交曲線
于
,
兩點,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com