已知橢圓的右焦點為
,點
在橢圓上.
(1)求橢圓的方程;
(2)點在圓
上,且
在第一象限,過
作圓
的切線交橢圓于
,
兩點,問:△
的周長是否為定值?如果是,求出定值;如果不是,說明理由.
(1);(2)詳見解析
解析試題分析:(1)根據點在曲線上可代入方程,再根據橢圓中,解方程組可得
的值。從而可得橢圓方程。法二,還可根據橢圓的定義橢圓上點到兩焦點的距離為
直接求得
,再根據
求
。(2)設
的方程為
,根據與圓相切可得
間的關系。再將直線與橢圓方程聯立消掉
整理為關于
的一元二次方程,可得根與系數的關系。由直線與圓錐曲線的相交弦公式可得
,再根據兩點間距離可求
,將三邊長相加,根據前邊得到的
間的關系問題即可得證。
試題解析:(1)『解法1』:
(1)由題意,得,2分
解得4分
∴橢圓方程為.5分
『解法2』:右焦點為
,
左焦點為,點
在橢圓上
所以,
所以橢圓方程為5分
(2)『解法1』:
由題意,設的方程為
∵與圓
相切
∴,即
6分
由,得
7分
設,則
,
8分
∴10分
又
∴11分
∴(定值)12分
『解法2』:
設,
8分
連接,由相切條件知:
10分
同理可求
所以為定值.12分
考點:1橢圓的標準方程;2直線和圓錐曲線的相交弦問題;3直線和圓的位置關系。
科目:高中數學 來源: 題型:解答題
已知中心在坐標原點,焦點在軸上的橢圓過點
,且它的離心率
.
(1)求橢圓的標準方程;
(2)與圓相切的直線
交橢圓于
兩點,若橢圓上一點
滿足
,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的短半軸長為
,動點
在直線
(
為半焦距)上.
(1)求橢圓的標準方程;
(2)求以為直徑且被直線
截得的弦長為
的圓的方程;
(3)設是橢圓的右焦點,過點
作
的垂線與以
為直徑的圓交于點
,
求證:線段的長為定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的由頂點為A,右焦點為F,直線
與x軸交于點B且與直線
交于點C,點O為坐標原點,
,過點F的直線
與橢圓交于不同的兩點M,N.
(1)求橢圓的方程;
(2)求的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線.
(1)若圓心在拋物線上的動圓,大小隨位置而變化,但總是與直線
相切,求所有的圓都經過的定點坐標;
(2)拋物線的焦點為
,若過
點的直線與拋物線相交于
兩點,若
,求直線
的斜率;
(3)若過點且相互垂直的兩條直線
,拋物線與
交于點
與
交于點
.
證明:無論如何取直線,都有
為一常數.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的離心率e=
,一條準線方程為x=
(1)求橢圓C的方程;
(2)設G、H為橢圓C上的兩個動點,O為坐標原點,且OG⊥OH.
①當直線OG的傾斜角為60°時,求△GOH的面積;
②是否存在以原點O為圓心的定圓,使得該定圓始終與直線GH相切?若存在,請求出該定圓方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖;.已知橢圓C:的離心率為
,以橢圓的左頂點T為圓心作圓T:
設圓T與橢圓C交于點M、N.
(1)求橢圓C的方程;
(2)求的最小值,并求此時圓T的方程;
(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與軸交于點R,S,O為坐標原點. 試問;是否存在使
最大的點P,若存在求出P點的坐標,若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:=1(a>b>0)的一個頂點為A(2,0),離心率為
.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線的焦點在x軸上,兩個頂點間的距離為2,焦點到漸近線的距離為.
(1)求雙曲線的標準方程;
(2)寫出雙曲線的實軸長、虛軸長、焦點坐標、離心率、漸近線方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com