【題目】2018年全國數(shù)學(xué)奧賽試行改革:在高二一年中舉行5次全區(qū)競賽,學(xué)生如果其中2次成績達(dá)全區(qū)前20名即可進(jìn)入省隊培訓(xùn),不用參加其余的競賽,而每個學(xué)生最多也只能參加5次競賽.規(guī)定:若前4次競賽成績都沒有達(dá)全區(qū)前20名,則第5次不能參加競賽.假設(shè)某學(xué)生每次成績達(dá)全區(qū)前20名的概率都是,每次競賽成績達(dá)全區(qū)前20名與否互相獨(dú)立.
(1)求該學(xué)生進(jìn)入省隊的概率.
(2)如果該學(xué)生進(jìn)入省隊或參加完5次競賽就結(jié)束,記該學(xué)生參加競賽的次數(shù)為,求
的分布列及
的數(shù)學(xué)期望.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx(b∈R),g(x)
.
(1)討論函數(shù)f(x)的單調(diào)性
(2)是否存在實(shí)數(shù)b使得函數(shù)y=f(x)在x∈(,+∞)上的圖象存在函數(shù)y=g(x)的圖象上方的點(diǎn)?若存在,請求出最小整數(shù)b的值,若不存在,請說明理由.(參考數(shù)據(jù)ln2=0.6931,
1.6487)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
,函數(shù)
在
,
處取得極值,其中
.
(1)求實(shí)數(shù)t的取值范圍;
(2)判斷在
上的單調(diào)性并證明;
(3)已知在
上的任意
、
,都有
,令
,若函數(shù)
有3個不同的零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2010-2018年之間,受益于基礎(chǔ)設(shè)施建設(shè)對光纖產(chǎn)品的需求,以及個人計算機(jī)及智能手機(jī)的下一代規(guī)格升級,電動汽車及物聯(lián)網(wǎng)等新機(jī)遇,連接器行業(yè)增長呈現(xiàn)加速狀態(tài).根據(jù)該折線圖,下列結(jié)論正確的個數(shù)為( )
①每年市場規(guī)模量逐年增加;
②增長最快的一年為2013~2014;
③這8年的增長率約為40%;
④2014年至2018年每年的市場規(guī)模相對于2010年至2014年每年的市場規(guī)模,數(shù)據(jù)方差更小,變化比較平穩(wěn)
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論在
上的零點(diǎn)個數(shù);
(2)當(dāng)時,若存在
,使
,求實(shí)數(shù)
的取值范圍.(
為自然對數(shù)的底數(shù),其值為2.71828……)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某人準(zhǔn)備投資1200萬元辦一所中學(xué),為了考慮社會效益和經(jīng)濟(jì)效益,對該地區(qū)教育市場進(jìn)行調(diào)查,得出一組數(shù)據(jù),列表如下(以班級為單位).
市場調(diào)查表:
班級學(xué)生數(shù) | 配備教師數(shù) | 硬件建設(shè)費(fèi)(萬元) | 教師年薪(萬元) | |
初中 | 50 | 2.0 | 28 | 1.2 |
高中 | 40 | 2.5 | 58 | 1.6 |
根據(jù)物價部門的有關(guān)規(guī)定:初中是義務(wù)教育階段,收費(fèi)標(biāo)準(zhǔn)適當(dāng)控制,預(yù)計除書本費(fèi)、辦公費(fèi)外,初中每人每年可收取600元.高中每人每年可收取1500元.因生源和環(huán)境等條件限制,辦學(xué)規(guī)模以20至30個班為宜(含20個班與30個),教師實(shí)行聘任制.初、高中教育周期均為三年,設(shè)初中編制為個班,高中編制為
個班,請你合理地安排招生計劃,使年利潤最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計算圓的周長,面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個近似數(shù)值,這個結(jié)果是當(dāng)時世界上圓周率計算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時,某同學(xué)利用計算機(jī)隨機(jī)模擬法向圓內(nèi)隨機(jī)投擲點(diǎn),計算得出該點(diǎn)落在正六邊形內(nèi)的頻率為0.8269,那么通過該實(shí)驗計算出來的圓周率近似值為(參考數(shù)據(jù):)
A. 3.1419B. 3.1417C. 3.1415D. 3.1413
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com