【題目】公元263年左右,我國古代數(shù)學(xué)家劉徽用圓內(nèi)接正多邊形的面積去逼近圓的面積求圓周率,他從單位圓內(nèi)接正六邊形算起,令邊數(shù)一倍一倍地增加,即12,24,48,…,192,…,逐個算出正六邊形,正十二邊形,正二十四邊形,…,正一百九十二邊形,…的面積,這些數(shù)值逐步地逼近圓面積,劉徽算到了正一百九十二邊形,這時候
的近似值是3.141024,劉徽稱這個方法為“割圓術(shù)”,并且把“割圓術(shù)”的特點(diǎn)概括為“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”.劉徽這種想法的可貴之處在于用已知的、可求的來逼近未知的、要求的,用有限來逼近無窮,這種思想極其重要,對后世產(chǎn)生了巨大影響.按照上面“割圓術(shù)”,用正二十四邊形來估算圓周率,則
的近似值是( )(精確到
).(參考數(shù)據(jù)
)
A.3.14B.3.11C.3.10D.3.05
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線:
(
),直線
:
,
與
交于P、Q兩點(diǎn),
為P關(guān)于y軸的對稱點(diǎn),直線
與y軸交于點(diǎn)
;
(1)若點(diǎn)是
的一個焦點(diǎn),求
的漸近線方程;
(2)若,點(diǎn)P的坐標(biāo)為
,且
,求k的值;
(3)若,求n關(guān)于b的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中
.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)使不等式對任意
,
恒成立時最大的
記為
,求當(dāng)
時,
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,設(shè)
的內(nèi)切圓分別與邊
相切于點(diǎn)
,已知
,記動點(diǎn)
的軌跡為曲線
.
(1)求曲線的方程;
(2)過的直線與
軸正半軸交于點(diǎn)
,與曲線E交于點(diǎn)
軸,過
的另一直線與曲線
交于
兩點(diǎn),若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(a>0).
(1)求f(x)的單調(diào)增區(qū)間;
(2)當(dāng)x∈[0,π]時,f(x)值域?yàn)?/span>[3,4],求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),曲線
在點(diǎn)
處的切線方程為
.
(Ⅰ)求,
的值;
(Ⅱ)當(dāng)時,若
為整數(shù),且
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】東莞的輕軌給市民出行帶來了很大的方便,越來越多的市民選擇乘坐輕軌出行,很多市民都會開汽車到離家最近的輕軌站,將車停放在輕軌站停車場,然后進(jìn)站乘輕軌出行,這給輕軌站停車場帶來很大的壓力.某輕軌站停車場為了解決這個問題,決定對機(jī)動車停車施行收費(fèi)制度,收費(fèi)標(biāo)準(zhǔn)如下:4小時內(nèi)(含4小時)每輛每次收費(fèi)5元;超過4小時不超過6小時,每增加一小時收費(fèi)增加3元;超過6小時不超過8小時,每增加一小時收費(fèi)增加4元,超過8小時至24小時內(nèi)(含24小時)收費(fèi)30元;超過24小時,按前述標(biāo)準(zhǔn)重新計費(fèi).上述標(biāo)準(zhǔn)不足一小時的按一小時計費(fèi).為了調(diào)查該停車場一天的收費(fèi)情況,現(xiàn)統(tǒng)計1000輛車的停留時間(假設(shè)每輛車一天內(nèi)在該停車場僅停車一次),得到下面的頻數(shù)分布表:
| ||||||
頻數(shù)(車次) | 100 | 100 | 200 | 200 | 350 | 50 |
以車輛在停車場停留時間位于各區(qū)間的頻率代替車輛在停車場停留時間位于各區(qū)間的概率.
(1)現(xiàn)在用分層抽樣的方法從上面1000輛車中抽取了100輛車進(jìn)行進(jìn)一步深入調(diào)研,記錄并統(tǒng)計了停車時長與司機(jī)性別的列聯(lián)表:
男 | 女 | 合計 | |
不超過6小時 | 30 | ||
6小時以上 | 20 | ||
合計 | 100 |
完成上述列聯(lián)表,并判斷能否有90%的把握認(rèn)為“停車是否超過6小時”與性別有關(guān)?
(2)(i)表示某輛車一天之內(nèi)(含一天)在該停車場停車一次所交費(fèi)用,求
的概率分布列及期望
;
(ii)現(xiàn)隨機(jī)抽取該停車場內(nèi)停放的3輛車,表示3輛車中停車費(fèi)用大于
的車輛數(shù),求
的概率.
參考公式:,其中
0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.780 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若在區(qū)間
內(nèi)有且只有一個實(shí)數(shù)
,使得
成立,則稱函數(shù)
在區(qū)間
內(nèi)具有唯一零點(diǎn).
(1)判斷函數(shù)在區(qū)間
內(nèi)是否具有唯一零點(diǎn),說明理由:
(2)已知向量,
,
,證明
在區(qū)間
內(nèi)具有唯一零點(diǎn).
(3)若函數(shù)在區(qū)間
內(nèi)具有唯一零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年在印度尼西亞日惹舉辦的亞洲乒乓球錦標(biāo)賽男子團(tuán)體決賽中,中國隊(duì)與韓國隊(duì)相遇,中國隊(duì)男子選手A,B,C,D,E依次出場比賽,在以往對戰(zhàn)韓國選手的比賽中他們五人獲勝的概率分別是0.8,0.8,0.8,0.75,0.7,并且比賽勝負(fù)相互獨(dú)立.賽會釆用5局3勝制,先贏3局者獲得勝利.
(1)在決賽中,中國隊(duì)以3∶1獲勝的概率是多少?
(2)求比賽局?jǐn)?shù)的分布列及數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com