日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在矩形中,已知,點分別在上,且,將四邊形沿折起,使點在平面上的射影在直線上.

(I)求證:

(II)求點到平面的距離;

(III)求直線與平面所成的正弦值.

【答案】(1)見解析(2)2(3)

【解析】試題分析:

(1)由折疊關系可得平面

(2)利于題意結合勾股定理列方程組,求解可得點到平面的距離為2;

(3)做出直線與平面所成的角,結合(1)(2)的結論可得直線與平面所成的正弦值為.

試題解析:

解:(1)由于平面 ,又由于

平面

法一:(2)設 ,過垂直

因線段 在翻折過程中長度不變,根據勾股定理:

,可解得

線段長度為,即點的平面的距離為

(2)延長于點,因為

到平面的距離為點到平面距離的

平面的距離為,而

直線與平面新角的正弦值為

法二:(2)如圖,過點,過點平面,分別以軸建立空間直角坐標系,設點,由于

解得于是,所以線段的長度為

即點到平面的距離為

(3)從而,故

設平面的一個法向量為,設直線與平面所成角的大小為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知M(x0,y0)是橢圓C:=1上的任一點,從原點O向圓M:(x-x0)2+(y-y0)2=2作兩條切線,分別交橢圓于點P,Q.

(1)若直線OP,OQ的斜率存在,并記為k1,k2,求證:k1k2為定值;

(2)試問|OP|2+|OQ|2是否為定值?若是,求出該值;若不是,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(1)已知f(x),求f()的值

(2)已知-π<x<0sin(πx)cosx=-.

①求sinxcosx的值;②求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:x2+y2=4,直線l:x+y=2.以O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標系.

(1)將圓C和直線l的方程化為極坐標方程;

(2)P是l上的點,射線OP交圓C于點R,又點Q在OP上且滿足|OQ|·|OP|=|OR|2,當點P在l上移動時,求點Q軌跡的極坐標方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知[1,+∞).

(1)時,判斷函數單調性并證明;

(2)時,求函數的最小值;

(3)若對任意[1,+∞),>0恒成立,試求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知垂直于以為直徑的圓所在平面,點在線段上,點為圓上一點,且

(Ⅰ) 求證:

(Ⅱ) 求二面角余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中為常數.

(1)若,求曲線在點處的切線方程;

(2)若,求零點的個數;

(3)若為整數,且當時, 恒成立,求的最大值.

(參考數據

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司對新研發的一種產品進行試銷,得到如下數據及散點圖:

其中 .

(1)根據散點圖判斷 哪一對具有較強的線性相關性(給出判斷即可,不必說明理由)?

(2)根據(1)的判斷結果及數據,建立關于的回歸方程(運算過程及回歸方程中的系數均保留兩位有效數字).

(3)定價為150元/ 時,天銷售額的預報值為多少元?

附:對于一組數據,其回歸直線的斜率和截距的最小二乘法估計分別為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)當時,求函數的單調區間;

(Ⅱ)若對任意恒成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 中文字幕亚洲二区 | 日韩视频中文字幕 | 久草免费电影 | 欧美日韩综合视频 | 国产自产精品视频 | 草逼网站 | 日韩一区二区三区精品 | av解说在线精品 | 日韩av黄色 | 99国产精品久久久久久久 | 国产又色又爽又黄 | 欧美日韩毛片 | 日韩视频欧美视频 | 欧美黑人巨大久久久精品一区 | 天天干夜夜骑 | 一区二区三区视频 | 国产一区二区三区四区 | 欧美激情一区二区三区四区 | 国产精品综合 | 色免费视频 | 成人精品一区二区三区中文字幕 | 91精品一区二区三区在线观看 | 中文字幕视频网站 | 国产精品一区二区三区在线 | 亚洲色图 偷拍自拍 | 欧美中文字幕在线观看 | 亚洲网站在线观看 | 国产精品欧美日韩 | 亚洲激情视频网 | 国产在线a | 91亚洲国产成人久久精品网站 | 日日操操 | 国产日韩欧美视频 | 国语对白做受欧美 | 中文字幕一区在线观看 | 九九在线视频 | 黄色免费看视频 | 国产精品一区二区麻豆 | 午夜在线一区 | 久久se精品一区精品二区 | 高清一区二区 |