A. | 50 $\sqrt{2}$m | B. | 100 $\sqrt{2}$m | C. | 100($\sqrt{3}$+1)m | D. | 50($\sqrt{3}$+1)m |
分析 由題意畫出圖象,由條件求出∠ACB,利用正弦定理求出BC,然后求出河的寬度.
解答 解:由題意畫出圖象,如圖所示:
在△ABC中,∠BAC=30°,∠ACB=75°-30°=45°,
且AB=200,
由正弦定理得,$\frac{AB}{sin∠ACB}=\frac{BC}{sin∠BAC}$,
則BC=$\frac{AB•sin∠BAC}{sin∠ACB}$=$\frac{200×\frac{1}{2}}{\frac{\sqrt{2}}{2}}$=100$\sqrt{2}$,
所以河的寬度為:BCsin75°=100$\sqrt{2}$×$\frac{\sqrt{6}+\sqrt{2}}{4}$=50($\sqrt{3}$+1)(m),
故選D.
點評 本題考查了正弦定理在實際中的應用,解題的關鍵是正確畫出圖象,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 4029 | B. | 3029 | C. | 2249 | D. | 2209 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 計算1+2+3+┅+n | B. | 計算1+(1+2)+(1+2+3)+┅+(1+2+3+┅+n) | ||
C. | 計算n! | D. | 以上都不對 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=sinx | B. | y=-|x+1| | C. | $y=ln\frac{2-x}{x+2}$ | D. | $y=\frac{1}{2}({2^x}+{2^{-x}})$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 10 | B. | 20 | C. | 30 | D. | 40 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com