【題目】袋中共有8個乒乓球,其中有5個白球,3個紅球,這些乒乓球除顏色外完全相同.從袋中隨機取出一球,如果取出紅球,則把它放回袋中;如果取出白球,則該白球不再放回,并且另補一個紅球放入袋中,重復上述過程次后,袋中紅球的個數記為
.
(I)求隨機變量的概率分布及數學期望
;
(Ⅱ)求隨機變量的數學期望
關于
的表達式.
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,傾斜角為
的直線
的參數方程為
(
為參數).以坐標原點
為極點,
軸正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求直線的普通方程和曲線
的直角坐標方程;
(Ⅱ)已知點,若點
的極坐標為
,直線
經過點
且與曲線
相交于
兩點,設線段
的中點為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中國古代名詞“芻童”原來是草堆的意思,古代用它作為長方體棱臺(上、下底面均為矩形額棱臺)的專用術語,關于“芻童”體積計算的描述,《九章算術》注曰:“倍上表,下表從之,亦倍小表,上表從之,各以其廣乘之,并,以高若深乘之,皆六面一.”其計算方法是:將上底面的長乘二,與下底面的長相加,再與上底面的寬相乘;將下底面的長乘二,與上底面的長相加,再與下底面的寬相乘;把這兩個數值相加,與高相乘,再取其六分之一,以此算法,現有上下底面為相似矩形的棱臺,相似比為,高為3,且上底面的周長為6,則該棱臺的體積的最大值是( )
A. 14 B. 56 C. D. 63
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標平面內,以坐標原點為極點,
軸的非負半軸為極軸建立極坐標系.已知曲線
的極坐標方程為
,直線
的參數方程為
(
為參數).
(1)分別求出曲線和直線
的直角坐標方程;
(2)若點在曲線
上,且
到直線
的距離為1,求滿足這樣條件的點
的個數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在原點,離心率等于
,它的一個短軸端點恰好是拋物線
的焦點.
(1)求橢圓的方程;
(2)已知、
是橢圓上的兩點,
是橢圓上位于直線
兩側的動點.
①若直線的斜率為
,求四邊形
面積的最大值;
②當運動時,滿足
,試問直線
的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+bx+c(a>0),且f(1).
(1)求證:函數f(x)有兩個不同的零點;
(2)設x1,x2是函數f(x)的兩個不同的零點,求|x1﹣x2|的取值范圍;
(3)求證:函數f(x)在區間(0,2)內至少有一個零點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l1:kx-y+4=0與直線l2:x+ky-3=0相交于點P,則當實數k變化時,點P到直線4x-3y+10=0的距離的最大值為( )
A.2B.C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)求曲線在點
處的切線方程;
(2)若函數,求
的單調區間;并證明:當
時,
;
(3)證明:當時,函數
有最小值,設
最小值為
,求函數
的值域.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com