【題目】在位于城市A南偏西相距100海里的B處,一股臺風沿著正東方向襲來,風速為120海里/小時,臺風影響的半徑為
海里
(1)若,求臺風影響城市A持續的時間(精確到1分鐘)?
(2)若臺風影響城市A持續的時間不超過1小時,求的取值范圍
科目:高中數學 來源: 題型:
【題目】A,B,C三個班共有100名學生,為調查他們的體育鍛煉情況,通過分層抽樣獲得了部分學生一周的鍛煉時間,數據如下表(單位:小時):
A班 | 6 6.5 7 7.5 8 |
B班 | 6 7 8 9 10 11 12 |
C班 | 3 4.5 6 7.5 9 10.5 12 13.5 |
(Ⅰ)試估計C班的學生人數;
(Ⅱ)從A班和C班抽出的學生中,各隨機選取一人,A班選出的人記為甲,C班選出的人記為乙.假設所有學生的鍛煉時間相互獨立,求該周甲的鍛煉時間比乙的鍛煉時間長的概率;
(Ⅲ)再從A,B,C三個班中各隨機抽取一名學生,他們該周的鍛煉時間分別是7,9,8.25(單位:小時).這3個新數據與表格中的數據構成的新樣本的平均數記為,表格中數據的平均數記為
,試判斷
和
的大小.(結論不要求證明)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校共有學生15000人,其中男生10500人,女生4500人,為調查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300名學生每周平均體育運動時間的樣本數據(單位:小時).
(1)應收集多少位女生的樣本數據?
(2)根據這300個樣本數據,得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數據的分組區間為:,
,
,
,
,
,估計該校學生每周平均體育運動時間超過4小時的概率;
(3)在樣本數據中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯表,并判斷是否有的把握認為“該校學生的毎周平均體育運動時間與性別有關”.
男生 | 女生 | 總計 | |
每周平均體育運動時間不超過4小時 | |||
每周平均體育運動時間超過4小時 | |||
總計 |
附:,其中
.
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在位于城市A南偏西相距100海里的B處,一股臺風沿著正東方向襲來,風速為120海里/小時,臺風影響的半徑為
海里
(1)若,求臺風影響城市A持續的時間(精確到1分鐘)?
(2)若臺風影響城市A持續的時間不超過1小時,求的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高三4班有50名學生進行了一場投籃測試,其中男生30人,女生20人.為了了解其投籃成績,甲、乙兩人分別都對全班的學生進行編號(1-50號),并以不同的方法進行數據抽樣,其中一人用的是系統抽樣,另一人用的是分層抽樣.若此次投籃測試的成績大于或等于80分視為優秀,小于80分視為不優秀,以下是甲、乙兩人分別抽取的樣本數據:
甲抽取的樣本數據
編號 | 2 | 7 | 12 | 17 | 22 | 27 | 32 | 37 | 42 | 47 |
性別 | 男 | 女 | 男 | 男 | 女 | 男 | 女 | 男 | 女 | 女 |
投籃成 績 | 90 | 60 | 75 | 80 | 83 | 85 | 75 | 80 | 70 | 60 |
乙抽取的樣本數據
編號 | 1 | 8 | 10 | 20 | 23 | 28 | 33 | 35 | 43 | 48 |
性別 | 男 | 男 | 男 | 男 | 男 | 男 | 女 | 女 | 女 | 女 |
投籃成 績 | 95 | 85 | 85 | 70 | 70 | 80 | 60 | 65 | 70 | 60 |
(Ⅰ)在乙抽取的樣本中任取3人,記投籃優秀的學生人數為,求
的分布列和數學期望.
(Ⅱ)請你根據乙抽取的樣本數據完成下列2×2列聯表,判斷是否有95%以上的把握認為投籃成績和性別有關?
優秀 | 非優秀 | 合計 | |
男 | |||
女 | |||
合計 | 10 |
(Ⅲ)判斷甲、乙各用何種抽樣方法,并根據(Ⅱ)的結論判斷哪種抽樣方法更優?說明理由.
下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(參考公式:,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司打算引進一臺設備使用一年,現有甲、乙兩種設備可供選擇.甲設備每臺10000元,乙設備每臺9000元.此外設備使用期間還需維修,對于每臺設備,一年間三次及三次以內免費維修,三次以外的維修費用均為每次1000元.該公司統計了曾使用過的甲、乙各50臺設備在一年間的維修次數,得到下面的頻數分布表,以這兩種設備分別在50臺中的維修次數頻率代替維修次數發生的概率.
維修次數 | 2 | 3 | 4 | 5 | 6 |
甲設備 | 5 | 10 | 30 | 5 | 0 |
乙設備 | 0 | 5 | 15 | 15 | 15 |
(1)設甲、乙兩種設備每臺購買和一年間維修的花費總額分別為和
,求
和
的分布列;
(2)若以數學期望為決策依據,希望設備購買和一年間維修的花費總額盡量低,且維修次數盡量少,則需要購買哪種設備?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線上任意一點
到直線
:
的距離是它到點
距離的2倍;曲線
是以原點為頂點,
為焦點的拋物線.
(1)求,
的方程;
(2)設過點的動直線與曲線
相交于
,
兩點,分別以
,
為切點引曲線
的兩條切線
,
,設
,
相交于點
.連接
的直線交曲線
于
,
兩點.
(i)求證:;
(ii)求的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com