【題目】某公司共有60位員工,為提高員工的業務技術水平,公司擬聘請專業培訓機構進行培訓.培訓的總費用由兩部分組成:一部分是給每位參加員工支付400元的培訓材料費;另一部分是給培訓機構繳納的培訓費.若參加培訓的員工人數不超過30人,則每人收取培訓費1000元;若參加培訓的員工人數超過30人,則每超過1人,人均培訓費減少20元.設公司參加培訓的員工人數為x人,此次培訓的總費用為y元.
(1)求出y與x之間的函數關系式;
(2)請你預算:公司此次培訓的總費用最多需要多少元?
科目:高中數學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為
,上、下頂點分別是
,點
是
的中點,若
,且
.
(1)求橢圓 的標準方程;
(2)過 的直線
與橢圓
交于不同的兩點
,求
的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,函數
在
上是單調遞增函數,則
的取值范圍是______.
【答案】
【解析】∵,
∴,
又函數在
單調遞增,
∴在
上恒成立,
即在
上恒成立。
又當時,
,
∴。
又,
∴。
故實數的取值范圍是
。
答案:
點睛:對于導函數和函數單調性的關系要分清以下結論:
(1)當時,若
,則
在區間D上單調遞增(減);
(2)若函數在區間D上單調遞增(減),則
在區間D上恒成立。即解題時可將函數單調性的問題轉化為
的問題,但此時不要忘記等號。
【題型】填空題
【結束】
19
【題目】某珠寶店丟了一件珍貴珠寶,以下四人中只有一人說真話,只有一人偷了珠寶.甲:我沒有偷;乙:丙是小偷;丙:丁是小偷;丁:我沒有偷.根據以上條件,可以判斷偷珠寶的人是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,平面ABEF⊥平面ABC,四邊形ABEF為矩形,AC=BC.O為AB的中點,OF⊥EC. (Ⅰ)求證:OE⊥FC:
(Ⅱ)若 =
時,求二面角F﹣CE﹣B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖放置的邊長為2的正三角形ABC沿x軸滾動,記滾動過程中頂點A的橫、縱坐標分別為和
,且
是
在映射
作用下的象,則下列說法中:
① 映射的值域是
;
② 映射不是一個函數;
③ 映射是函數,且是偶函數;
④ 映射是函數,且單增區間為
,
其中正確說法的序號是___________.
說明:“正三角形ABC沿x軸滾動”包括沿x軸正方向和沿x軸負方向滾動.沿x軸正方向滾動指的是先以頂點B為中心順時針旋轉,當頂點C落在x軸上時,再以頂點C為中心順時針旋轉,如此繼續.類似地,正三角形ABC可以沿x軸負方向滾動.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,函數
的最小值為
.
(1)求;
(2)是否存在實數同時滿足下列條件:
①;
②當的定義域為
時, 值域為
?若存在, 求出
的值;若不存在, 說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是定義域為
的奇函數,當
.
(Ⅰ)求出函數在
上的解析式;
(Ⅱ)在答題卷上畫出函數的圖象,并根據圖象寫出
的單調區間;
(Ⅲ)若關于的方程
有三個不同的解,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點分別是橢圓
的左右頂點,
為其右焦點,
與
的等比中項是
,橢圓的離心率為
.
(1)求橢圓的方程;
(2)設不過原點的直線
與該軌跡交于
兩點,若直線
的斜率依次成等比數列,求
的面積的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com