日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設f(x)是定義在(-∞,+∞)上的函數,對一切x∈R均有f(x+2)=-f(x),當-1<x≤1時,f(x)=3x-2,則當1<x≤3時,函數f(x)的解析式為
 
考點:函數的周期性,函數解析式的求解及常用方法
專題:函數的性質及應用
分析:由f(x+2)=-f(x),當1<x≤3時,-1<x-2≤1,利用當-1<x≤1時,f(x)=3x-2,可求得答案.
解答: 解:∵定義在R上的函數f(x)對一切x∈R均有f(x+2)=-f(x),
∴f[(x-2)+2]=-f(x-2)=f(x),
∵又x∈(-1,1]時,f(x)=2x+1,
當1<x≤3時,-1<x-2≤1,
∴f(x)=-f(x-2)=-3(x-2)-2=-3x+4,
故答案為:f(x)=-3x+4
點評:本題考查函數的周期性及函數解析式的求解,求得當1<x≤3時,-1<x-2≤1是解答的關鍵,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知在平面直角坐標系中,直線l的參數方程是
x=1+t
y=
3
t
(t為參數),以坐標原點為極點,x軸正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為ρ2cos2θ-ρ2sin2θ+2ρsinθ-2=0,求直線l的極坐標方程,若直線與曲線相交于A、B,求|AB|.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知cos(
π
3
-a)=
3
3
,求sin(
6
-a)+sin2
3
+a)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

P是圓(x-5)2+(y-3)2=9上點,則點P到直線3x+4y-2=0的最大距離是(  )
A、2B、5C、8D、9

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=log 
1
2
1-ax
x-1
 為奇函數,a為常數.
(1)求a的值,并用函數的單調性定義證明f(x)在區間(1,+∞) 內單調遞增;
(3)若對于區間[3,4]上的每一個的x值,不等式f(x)≥(
1
2
x+m恒成立,求實數m最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax3-3x+1,若f(x)存在唯一的零點x0,且x0>0,則a的取值范圍是(  )
A、(2,+∞)
B、(1,+∞)
C、(1,2)
D、(-∞,-1)

查看答案和解析>>

科目:高中數學 來源: 題型:

一個四面體的頂點在空間直角坐標系O-xyz中的坐標分別為(0,0,0),(1,1,0),(1,0,1),(0,0,a)(a<0),畫該四面體三視圖中的正視圖時,以yoz平面為投影面,得到正視圖的面積為2,則該四面體的體積為(  )
A、
1
3
B、
1
2
C、1
D、
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

已知△ABC中,角A,B,C所對的邊分別為a,b,c若A,B,C成等差數列,b=2,記角A=x,a+c=f(x).
(1)當f(x)取最大值時,求△ABC的面積;
(2)若f(x-
π
6
)=
12
5
,求sin2x的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)=
lnx
x
在(0,e)上遞增,在(e,+∞)上遞減(e為自然常數),若不等式x3-2ex2+mx-lnx≥0在(0,+∞)恒成立,則m的取值范圍是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 深夜视频在线观看 | 国产福利在线观看 | 日韩在线视频播放 | www.com国产 | 国语av| 国产精品天堂 | 天天躁日日躁狠狠躁伊人 | 亚洲黄色免费 | 九色视频丨porny丨丝袜 | 国产精品亚洲精品 | 神马午夜我不卡 | 五月婷婷影院 | 中文字幕综合 | 亚洲欧美日韩精品 | 亚洲视频一区在线观看 | 日本激情在线 | 日韩女优在线观看 | 日韩av专区| 亚洲精品免费在线 | 欧美香蕉视频 | 一区二区三区中文字幕 | 日韩精品大片 | 蜜臀99久久精品久久久久小说 | 免费网站av | 天天看天天干 | 久久免费观看视频 | 国产精品一区二区三 | 日韩一区二区免费视频 | www五月天| 日韩精品网站 | 日韩黄色一级视频 | 欧美精品日韩少妇 | 91午夜精品亚洲一区二区三区 | 黄色在线免费看 | 视频一区二区在线 | 国产黄网 | 日韩伦理在线观看 | 国产精品主播一区二区 | 久久一区 | 欧美日韩在线不卡 | 亚洲精品第一 |