【題目】定義非零向量的“相伴函數”為
(
),向量
稱為函數
的“相伴向量”(其中
為坐標原點),記平面內所有向量的“相伴函數”構成的集合為
.
(1)已知(
),求證:
,并求函數
的“相伴向量”模的取值范圍;
(2)已知點(
)滿足
,向量
的 “相伴函數”
在
處取得最大值,當點
運動時,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,AD∥BC,ADC=
PAB=90°,BC=CD=
AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(I)在平面PAB內找一點M,使得直線CM∥平面PBE,并說明理由;
(II)若二面角P-CD-A的大小為45°,求直線PA與平面PCE所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數多少之間的關系,他們分別到氣象局與某醫院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數,得到如表資料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數y(個) | 22 | 25 | 29 | 26 | 16 | 12 |
該興趣小組確定的研究方案是:先從這六組數據中選取2組,用剩下的4組數據求線性回歸方程,再用被選取的2組數據進行檢驗.
(1)求選取的2組數據恰好是相鄰兩個月的概率;
(2)若選取的是1月與6月的兩組數據,請根據2至5月份的數據,求出關于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過2人,則認為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線關于
軸對稱,頂點在坐標原點
,直線
經過拋物線
的焦點.
(1)求拋物線的標準方程;
(2)若不經過坐標原點的直線
與拋物線
相交于不同的兩點
,
,且滿足
,證明直線
過
軸上一定點
,并求出點
的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為1的正方體中,
為線段
的中點,
為線段
上一動點.
(Ⅰ)求證:;
(Ⅱ)當時,求三棱錐
的體積;
(Ⅲ)在線段上是否存在一點
,使得
平面
?說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com